首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ju JH  Lee IS  Sim WJ  Eun H  Oh JE 《Chemosphere》2009,74(3):441-447
The concentrations of 12 POPs listed in the Stockholm convention, chlorophenols (CPs) and PAHs were investigated in sludge samples from wastewater and sewage treatment plants (WWTPs and STPs). The concentrations of PCDD/Fs in the wastewater sludge ranged from 0.189 to 1092 ng-TEQkg(-1) dry wt., and most of the sludge samples had levels below the EU guideline for the land application of PCDD/Fs (<100 ng-TEQkg(-1) dry wt.) except one sample. Co-PCB congeners were analyzed from four WWTPs, with total concentrations ranging from 0.265 to 26.6 ng-TEQkg(-1) dry wt., which were similar to the results obtained from previous studies. The levels of PCDD/Fs and Co-PCBs varied according to the main source of the influent to each WWTP and the paper industry was the main source of these compounds in the sludge due to the chlorine bleaching process. In case of OCPs, HCB and p,p'-DDE were detected at relatively high levels in the sludge samples compared to other target compounds, ranging from 1.30 to 21.5 microg kg(-1) dry wt. and 0.758 to 14.8 microg kg(-1) dry wt., respectively. Different OCP distribution patterns were observed according to sludge types, with HCB and DDTs being dominant in the sludge from WWTPs and STPs, respectively. The total levels of PAHs and CPs ranged from 1.24 to 44.9 mg kg(-1) dry wt. and 0.340 to 3.85 mg kg(-1) dry wt., respectively. The PAHs and CPs were also shown to have various distribution patterns, possibly due to the different wastewater sources to the WWTPs.  相似文献   

2.
Chuang YH  Wang GS  Tung HH 《Chemosphere》2011,85(7):1146-1153
It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development—a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Clthreshold) for biodegradation was estimated at 0.46-0.5 mg L−1. The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Clthreshold influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.  相似文献   

3.
The frequency of Aeromonas spp in three wastewater-treatment plants (WWTPs) and two drinking-water plants (DWPs) in México City was determined. Samples were taken throughout a year by the Moore's swab technique. A total of 144 samples were obtained from WWTPs and 96 from DWPs of both incoming and outflowing water. Aeromonas spp was isolated in 31% of the samples, from both kinds of sources. The technique used for the isolation of the pathogen was suitable for samples with high associate microbiota content and for those with a scarce microbial content. The presence of mesophilic-aerobic, coliform, and fecal-coliform organisms was investigated to determine whether there was any correlation with the presence of Aeromonas spp. Most samples from WWTP, which did not comply with the Mexican standards, had the pathogen, and some of the samples from the outflow of the DWP, which were within the limits set by the Mexican standards, also had Aeromonas spp. Most samples containing Aeromonas spp. had concentrations below 0.1 ppm residual chlorine, and the strains were resistant to 0.3 ppm, which supports the recommendation to increase the residual chlorine concentration to 0.5 to 1.0 ppm, as recommended by the Mexican standards.  相似文献   

4.
The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.  相似文献   

5.
We created a database in order to quantitatively assess the occurrence and removal efficiency of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants (WWTPs). From 117 scientific publications, we compiled 6641 data covering 184 PPCPs. Data included the concentrations of PPCPs in WWTP influents and effluents, their removal efficiency and their loads to the aquatic environment. The first outputs of our database allowed to identify the most investigated PPCPs in WWTPs and the most persistent ones, and to obtain reliable and quantitative values on their concentrations, frequency of detection and removal efficiency in WWTPs. We were also able to compare various processes and pointed out activated sludge with nitrogen treatment and membrane bioreactor as the most efficient ones.  相似文献   

6.
Alternately operated wastewater treatment plants (WWTPs) are fundamentally different compared to conventional activated sludge WWTPs with respect to flow patterns and aeration in the biological reactors. Several model applications exist for conventional WWTPs, e.g. SimpleTreat, and in this study the effect of substituting a complex discontinuous operation, involving alternating degradation and flow conditions between two reactors, with one single bioreactor with continuos flow (SimpleTreat) has been investigated by setting up two models representing the respective operation schemes. The discontinuous operation induces fluctuations in the outlet concentrations that are not modelled with the single bioreactor model, however, the fluctuations and the associated uncertainties were found to be insignificant compared to the influence of the input parameter uncertainties on the model results. An empirical relationship between an aggregate pseudo-1st order degradation rate for the single bioreactor model and realistic aerobic and anoxic 1st order degradation rates, respectively, has been established. When using this aggregate degradation rate in the single bioreactor model an outlet concentration can be calculated that deviates no more than 2% from the mean outlet concentration from the alternating operation model. For substances with aerobic half-lives longer than approximately 2 h, which is valid for many chemical substances, the aggregate 1st order degradation rate can be set equal to the aerobic 1st order degradation rate.  相似文献   

7.
The project studied the occurrence, fate, and seasonal variation of 14 antibiotics, from five wastewater treatment plants (WWTPs) in Shanghai. The results indicated that ofloxacin, sulfamethoxazole, and oxytetracycline were the predominant antibiotics, with maximum concentrations of 1208.20, 959.13, and 564.30 ng/L in influents, while 916.88, 106.60, and 337.81 ng/L in effluents, respectively. The level of antibiotics in WWTPs obviously varied with seasonal changes, and higher detectable frequencies and concentrations were found in winter. The daily mass loads per capita of amoxicillin, enrofloxacin, and oxytetracycline in the study were all higher than those in other regions/countries, such as Hong Kong, Australia, and Italy. The elimination of antibiotics through these WWTPs was incomplete, and a wide range of removal efficiencies during the different treatment process and seasons were observed (?500.56 to 100 % in winter and ?124.24 to 94.21 % in summer). Sulfonamides were relatively easy to be removed in WWTPs and the ultraviolet (UV) process can effectively improve the removal efficiency. Risk assessment of antibiotics in effluents was estimated. Only AMOX’s hazard quotient (HQ) was higher than 0.01. Even though the environmental risks in the study were estimated to be low, the potential negative effects on aquatic ecosystems should call our attention as continually discharge in the long term.  相似文献   

8.
This study focused on the occurrence of long-chain perfluorinated chemicals (PFCs) in anaerobically stabilized sewage sludges from 20 municipal WWTPs using current and historic samples to evaluate the levels of PFCs and to identify the relative importance of commercial and industrial sources. A quantitative analytical method was developed based on solvent extraction of the analytes and a LC-MS/MS system. For total perfluoralkyl carboxylates (PFCAs), the concentrations ranged from 14 to 50 μg/kg dry matter. Concentrations of perfluorooctane sulfonic acid (PFOS) ranged from 15 to 600 μg/kg dry matter. In three WWTPs, the PFOS levels were six to nine times higher than the average values measured in the other plants. These elevated PFOS concentrations did not correlate with higher levels of PFCAs, indicating specific additional local sources for PFOS at these WWTPs. Average concentrations in selected samples from the years 1993, 2002, and 2008 did not change significantly.  相似文献   

9.
BACKGROUNDS: Perfluorinated compounds (PFCs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. Wastewater treatment plants (WWTPs) are fundamental utilities in cities, playing an important role in preventing water pollution by lowering pollution load in waste waters. However, some of the emerging organic pollutants, like PFCs cannot be efficiently removed by traditional biological technologies in WWTPs, and some even increase in effluents compared to influents due to the incomplete degradation of precursors. Hence, WWTPs are considered to be a main point source in cities for PFCs that enter the aquatic environment. However, the mass flow of PFCs from WWTPs has seldom been analyzed for a whole city. Hence, in the present study, 11 PFCs including series of perfluoroalkyl carboxylic acids (PFCAs, C4-C12) and two perfluoroalkyl sulfonates (PFASs, C6 and C8) were measured in WWTP influents and effluents and sludge samples from six municipal WWTPs in Tianjin, China. Generation and dissipation of the target PFCs during wastewater treatment process and their mass flow in effluents were discussed. RESULTS: All the target PFCs were detected in the six WWTPs, and the total PFC concentration in different WWTPs was highly influenced by the population density and commercial activities of the corresponding catchments. Perfluorooctanoic acid (PFOA) was the predominant PFC in water phase, with concentrations ranging from 20 to 170 ng/L in influents and from 30 to 145 ng/L in effluents. Concentrations of perfluoroalkyl sulfonates decreased substantially in the effluent compared to the influent, which could be attributed to the sorption onto sludge, whereas concentrations of PFOA and some other PFCAs increased in the effluent in some WWTPs due to their weaker sorption onto solids and the incomplete degradation of precursors. Perfluorooctane sulfonic acid (PFOS) was the predominant PFC in sludge samples followed by PFOA, and their concentrations ranged from 42 to 169 g/kg and from 12 to 68 g/kg, respectively. Sludge-wastewater distribution coefficients (log K(d)) ranged from 0.62 to 3.87 L/kg, increasing with carbon chain length of the homologues. The mass flow of some PFCs in the effluent was calculated, and the total mass flow from all the six municipal WWTPs in Tianjin was 26, 47, and 3.5 kg/year for perfluorohexanoic acid, PFOA, and PFOS, respectively.  相似文献   

10.
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.  相似文献   

11.
With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.  相似文献   

12.
It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).  相似文献   

13.
The occurrence of some veterinary medicines in the livestock wastewater plants (WWTPs) was investigated. This investigation represented the occurrence of veterinary medicines to treat in the livestock WWTPs or be discharged into the water system in Korea since the sampling sites were widely distributed across the nation and samples were collected from the 11 livestock WWTPs. Nine antibiotics, two analgesics, and two disinfectants occurred in the livestock wastewater plants (WWTPs). From 11 livestock WWTP influents, chlortetracycline, oxytetracycline, acetylsalicylic acid, and disinfectants frequently occurred with the high concentrations. Meanwhile, sulfamethoxazole, erythromycin-H2O, and trimethoprim did not occur during sampling periods. The values for log Kow of each chemical showed a high correlation with the number of hydrogen bonding acceptors and were important parameters to estimate and understand the biodegradability and toxicity of a compound in the environment. The biodegradability of each compound was proportional to the hydrophilicity of each compound and the toxicity was proportional to the number of hydrogen bonding acceptors of each compound. The expected introductory concentration (EIC), predicted exposure concentration (PEC), and hazard quotient showed that the livestock WWTP effluents were hazardous to ecosystems.  相似文献   

14.
15.
The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

Implications: Estimating emissions to the atmosphere is usually considered a complex task, especially when such discharge comes from diffuse or uncontrolled sources. In any approach to air quality control, just from the point of view of increasing knowledge or as a management problem in order to reduce present levels of pollution, accurate estimation of emission rates is revealed as a fundamental step. Evaluation from an indirect method provides a useful methodology in such cases. Combination of dispersion modeling with experimental air concentration measurements permits one to obtain a first estimation of H2S emission rates at several wastewater treatment plants. In a subsequent refinement of the process, the initial constant average emissions calculated were improved, leading to the formulation of a time-varying emission model, as a function of environmental quantities.  相似文献   

16.
Warren C  Mackay D  Whelan M  Fox K 《Chemosphere》2005,61(10):1458-1467
A novel and flexible approach is described for simulating the behaviour of chemicals in river basins. A number (n) of river reaches are defined and their connectivity is described by entries in an n x n matrix. Changes in segmentation can be readily accommodated by altering the matrix entries, without the need for model revision. Two models are described. The simpler QMX-R model only considers advection and an overall loss due to the combined processes of volatilization, net transfer to sediment and degradation. The rate constant for the overall loss is derived from fugacity calculations for a single segment system. The more rigorous QMX-F model performs fugacity calculations for each segment and explicitly includes the processes of advection, evaporation, water-sediment exchange and degradation in both water and sediment. In this way chemical exposure in all compartments (including equilibrium concentrations in biota) can be estimated. Both models are designed to serve as intermediate-complexity exposure assessment tools for river basins with relatively low data requirements. By considering the spatially explicit nature of emission sources and the changes in concentration which occur with transport in the channel system, the approach offers significant advantages over simple one-segment simulations while being more readily applicable than more sophisticated, highly segmented, GIS-based models.  相似文献   

17.
Sim WJ  Lee JW  Lee ES  Shin SK  Hwang SR  Oh JE 《Chemosphere》2011,82(2):179-186
Twenty-four pharmaceuticals were measured in wastewater from 12 municipal wastewater treatment plants (M-WWTPs), four livestock WWTPs (L-WWTPs), four hospital WWTPs (H-WWTPs) and four pharmaceutical manufacture WWTPs (P-WWTPs). The total concentration of pharmaceuticals in the influent samples was highest in the L-WWTPs followed by the P-WWTPs, H-WWTPs and M-WWTPs. The effluents had different patterns of pharmaceuticals than their corresponding influents because of the different fate of each compound in the WWTPs. Non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant in the influents from the M-WWTPs and P-WWTPs, while antibiotics were dominantly detected in the L-WWTP. In the H-WWTP influents, NSAIDs, caffeine and carbamazepine were dominant. In the P-WWTPs, the distribution of pharmaceuticals in the effluents varied with sampling sites and periods. The M-WWTP influents had the highest daily loads, while the effluents showed somewhat similar levels in all source types.  相似文献   

18.
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and widely distributed in the environment. Recently, the discharge of municipal waste water has been shown to be an important route of such perfluoroalkyl surfactants into the aquatic environment. The aim of this study was to assess the mass flow of PFOA and PFOS from typical waste water treatment plants (WWTPs) into surface waters. Samples were collected at different stages of treatment of four WWTPs in Northern Bavaria, Germany, and from the rivers receiving the treated waste waters (WW). The outflow of PFOA from the WWTPs to the rivers was 20-fold higher than the inflow to the plants; about a tenth was removed with the sludge. For PFOS, the increase from inlet to outlet was about 3-fold; almost half of it was retained in the sludge. Both surfactants were released into river water from the WWTP of a medium-sized city with domestic, industrial and commercial waste waters; in domestic waste waters the surfactants were found at much lower levels.  相似文献   

19.
城镇污水处理厂用地、运行及建设费用研究   总被引:5,自引:1,他引:4  
刘杰  郑西来  高超  陈蕾 《环境工程学报》2010,4(11):2522-2526
汇总收集了国内已建城镇污水处理厂的大量资料,分析探讨了污水处理厂厂区占地面积、运行及建设费用与处理规模之间的关系,为今后污水处理厂的设计规划、工艺选择、建设费用分析等提供参考依据。研究表明污水处理厂厂区占地面积与处理规模可用函数表示,且具有较高的相关性。城镇污水处理厂所选用的工艺和处理规模对其运行成本有较大的影响,分别对大中小规模的污水处理厂在不同工艺下的运行成本进行分析,得出大规模污水处理厂的工艺选择对其运行成本影响不大;中规模污水处理厂易采用氧化沟工艺;小规模的污水处理厂适合采用SBR工艺。建设费用与污水处理规模有密切关系,由于建设费用受多种因素影响,又以江浙地区为例,对其建设费用与污水处理规模之间关系进行具体分析,对以上结论给予一定的补充。  相似文献   

20.
Chang EE  Chiang PC  Chao SH  Lin YL 《Chemosphere》2006,64(7):1196-1203
The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid, and m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号