首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Size distributions of aerosol particles in the radius range of 0.006–0.53 μm were measured over the Pacific Ocean along the 150° longitude from about 20°N to 55°S. Throughout the tropical trade wind region, the size distribution of fine particles was relatively stable and exhibited a double-peaked characteristic with one peak at about 0.1 μm and the other in the 0.02–0.04 μm region, separated by a minimum at about 0.06 μm. The total concentrations of particles were in the 150–300 cm−3 range with 60–150 cm−3 residing in the accumulation mode (0.06<r<0.5 μm). South of the trade wind region, the measured size distributions and meteorological conditions were more diverse. Periods with very low concentrations in the accumulation mode were associated with regions of large-scale precipitation. Large increases in the number of nucleation mode particles were found in air masses with low concentrations of particles in the accumulation mode.  相似文献   

2.
Vertical profiles (surface to 5 km) of aerosol particle number concentration, NOy′ mixing ratio, and cloudwater SO42− and NO3 equivalent concentration were obtained in three field studies: North Bay, Ontario, during the summer of 1982 and the winter of 1983–1984, and Syracuse, New York, during the fall of 1984. The measurements from these locations and different seasons are compared. Generally, airborne concentrations are highest with air-mass back trajectories from the south and lowest with back trajectories from the north. For the southerly trajectories, median particle number concentrations (0.2–2 μm) near ground level (950 mb) vary from 1700 cm−3 during the summer project to 800 cm−3 during the winter project. At 700 mb, the south trajectory particle number concentration ranged between 60 and 170 cm−3. Median NOy′ mixing ratios for southerly back trajectories were approximately 6 and 9 ppb at 950 mb and 0.4 and 0.8 ppb at 700 mb for the fall and winter projects, respectively. Comparison of particle number concentration profiles outside of cloud with cloud droplet plus interstitial aerosol particle number concentrations inside cloud indicate that cumulus clouds can transport aerosols vertically from below cloud base. In contrast, stratiform clouds have similar concentrations inside the clouds as outside at the same altitude. The vertical variations of cloudwater sulphate and nitrate concentrations and the NO3/SO42− equivalent concentration ratio are discussed for each of the three field studies.  相似文献   

3.
The concentrations and chemical composition of suspended particulate matter were measured in both the fine and total size modes inside and outside five southern California museums over summer and winter periods. The seasonally averaged indoor/outdoor ratios for particulate matter mass concentrations ranged from 0.16 to 0.96 for fine particles and from 0.06 to 0.53 for coarse particles, with the lower values observed for buildings with sophisticated ventilation systems which include filters for particulate matter removal. Museums with deliberate particle filtration systems showed indoor fine particle concentrations generally averaging less than 10 μg m−3. One museum with no environmental control system showed indoor fine particle concentrations averaging nearly 60 μg m−3 in winter and coarse particle concentrations in the 30–40 μg m−3 range. Analyses of indoor vs outdoor concentrations of major chemical species indicated that indoor sources of organic matter may exist at all sites, but that none of the other measured species appear to have major indoor sources at the museums studied. Significant fractions of the dark-colored fine elemental (black) carbon and soil dust particles present in outdoor air are able to penetrate to the indoor atmosphere of the museums studied, and may constitute a soiling hazard to works of art displayed in museums.  相似文献   

4.
Monthly mean chemical composition of aerosol with diameter less than 8 μm was identified in Sapporo in 1982. The mass of aerosol was made up of nine components: elemental C, organics, SO42−, NO3, NH4+, Cl, Na+, soil particles and water. The concentrations of carbonaceous particles (elemental C and organics) was relatively high (12.7–16.0μ m−3) in autumn and winter (October–February) due to emission from domestic heating and comprised 36–41% of total aerosol mass. Higher concentration of soil particles was observed in spring (March–May) (9.7–13.1 μg m−3) and comprised 22–29% of total aerosol mass due to suspension by strong wind. On the other hand, the concentration of excess SO42− (non-sea salt SO42−), which ranged from 2.6–5.2 μg m−3, did not change remarkably with season, and the fraction of excess sulfate increased to 21% in summer (July–August) probably due to photochemical transformation from SO2. Nitrate concentration was far less than that of SO42− throughout the year in Sapporo.  相似文献   

5.
As part of the second Arctic Gas and Aerosol Sampling Program (AGASP-II), Arctic aerosol samples were collected by the NOAA WP-3D aircraft in spring 1986. The samples were analyzed in bulk and individual-particle form, using ion chromatography (IC) and electron microscopy (EM), respectively. Information on the chemical composition of the aerosol as determined by various techniques is presented, as well as morphology, concentration, and size distribution data obtained from individual particle analyses. For most flights, a stratospheric sample and a haze profile samople were collected. Haze samples exhibited greater particle concentrations than stratospheric samples, the highest concentrations in haze reaching ∼103 cm−3 (non-volatile particles > 0.05 μm diam). Sulfur was consistently observed to be a major element in both large and small particles in haze samples. Crustal elements such as Si, Al, K, Ca and Fe were often present in significant concentrations together with S. Particles that did not emit X-rays, possibly organic or sooty C, were observed in significant concentrations in both tropospheric and stratospheric samples. Chemical spot tests confirmed that SO42− was the major S-containing species and that NO3 was not nearly as prevalent as SO42− in the Arctic aerosol particles. The mass concentrations of major anions (Cl, SO42− and NO3) and cations (Na+, K+, NH4+, Ca2+ and Mg2+) in the bulk aerosols were determined using IC. The ratios between ion concentrations, e.g. Ca2+/Na+, SO42−/Na+ and Cl/Na+, may serve as indicators of aerosol origins and mixing status of various air masses. Aerosols collected on six flights demonstrated variability of particle characteristics in relation to sources and transport of Arctic haze.  相似文献   

6.
A research cruise was conducted in the summer of 1986 by a group of scientist from the U.S.A. and Mexico to investigate air chemistry over the Gulf of Mexico. Chemical, physical, meteorological and oceanographic measurements were carried out to survey temporal and spatial variations of diverse parameters throughout the Gulf. Emphases were placed on air-sea-land exchange of gases and aerosols, natural air quality, transport of anthropogenic air pollution, and acid rain deposition to the Gulf. Although the prevailing winds were easterly from the sea during the cruise, the air was highly polluted with continental aerosols, probably caused by local shifting winds and the oscillation between sea breeze and land breeze. Aerosol number concentrations were measured from 105 cm−3 at ports to 103 cm−3 in the open Gulf. The average aerosol mass concentration was ∼25μg M−3, consisting of 60% insoluble crustal particles that contained Si, Al, Fe; 30% seasalt particles that contained Na+ and Cl; and 10% anthropogenic sulfate and nitrate particles. Samples of rain water collected near the coast were acidic (pH ∼4). The concentrations of dimethyl sulfide correlated with bio-particle concentrations in surface seawater and could be a significant precursor of atmospheric SO42− particles. The life cycles of the aerosols in the Gulf, including sources, transport, transformation, and wet and dry deposition are discussed.  相似文献   

7.
This paper reports seasonal and spatial variations in the ambient air concentration of nitrogen dioxide throughout the State of Bahrain, from February to December 1992. Monitoring sites were chosen to include urban areas with high traffic density, suburban areas with low traffic density, commercial and industrial areas. Correlations between meteorological parameters and mean NO2 concentrations were analysed, and NO2 levels were only significantly correlated with temperature (r = 0.63). Only February, a winter month, showed a significantly lower concentration of NO2 with an overall mean value of 23 μgm−3, whereas in August, a summer month, it was 33 μgm−3. The results revealed that in a hot region like Bahrain, NO2 concentrations do not show significant monthly variations. Also summer-averaged NO2 values exceeded corresponding spring and winter values. In cold regions opposite patterns were observed. Moreover, the results revealed significant spatial variations in NO2 concentrations. In suburban areas with low traffic density, the overall mean NO2 level was 15, with a range of 12–17 μg m−3, while in urban areas with high traffic density, the overall mean value was 52 with a range of 44–60 μg m−3. The mean NO2 value in industrial sites with low traffic density was 21 with a range of 14–27 μg m−3, whereas in the same areas near major roads, it was 32 with a range of 31–32 μg m−3. These results indicate that automobiles exhaust are the dominant source of NO2 in Bahrain. The highest NO2 levels were found in roads with high traffic density, which are narrow, with several traffic lights and roundabouts, suggesting the effect of road geometry on NO2 levels.  相似文献   

8.
The mutagenicity and benzo(α)pyrene (BαP) content of airborne particles (172 samples) from four locations in Athens was studied for 1 year starting February 1984. All the organic extracts of airborne particulate matter showed direct mutagenic activity. There was a good correlation between BαP concentration and mutagenicity in all samples. Higher values of mutagenic activity and BαP concentrations were found at the sites located in the center of the city than at the sites located in the industrial areas. The height of the sampling place has a negative effect on both measured pollution parameters. The higher percentage of biological and chemical parameters were associated with particles <3.3 μm in diameter. The mean yearly values of mutagenic activity of airborne particulates and BαP levels, were 1.9 rev m−3 and 2.6 ng m−3, respectively and can be grouped among the median, between the heavily and the lightly polluted cities of the world. Higher values of mutagenic activity were found during winter months. From the diurnal variation of mutagenic activity it was found that maximum value occurred during morning (0900–1100). The main source of mutagens seems to be the emissions from diesel powered engines and central heating.  相似文献   

9.
Atmospheric deposition of SO2, and fine particles of Pb and Cd are calculated over a one-year period in a 66 km2 airshed with a segment-puff model. Emission variations, hourly mixing heights and meteorological values are considered to compute monthly averages of concentrations and deposition. Dry deposition is calculated by means of deposition velocities which are season- and land use-dependent. Wet deposition is determined using a washout coefficient. To assess the simulation performance, calculated SO2 results from the combination between the deposition velocity, the windspeed and direction and the location and type of sources. As annual averages, results for dry plus wet deposition are computed to be 0.84 mg m−2d−1 for sulfur, 4.15 μgm−2d−1 for lead and 0.0013 μgm−2d−1 for cadmium. A variation factor is derived from a sensitivity analysis. This factor amounts to 2.3−2.8 for the concentrations and 2.6−3.1 for the deposition, depending on the pollutant.  相似文献   

10.
During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions(0.5–20 μm) obtained using an aerodynamic particle sizer(model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5–10 μm were(15.0±2.1) cm-3,(11.8±2.6) μm2/cm3and(1.9±0.6) μm2/cm3, respectively, on the traffic-restricted day(Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5–0.7 and 0.5–0.8 μm, respectively, while for volume concentration, the most affected size ranges were 0.5–0.8, 1.7–2.0 and 5.0–5.4 μm. Number and volume concentrations of particles in size range 0.5–1.0 μm correlated well with the number of non-CNG(Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality.  相似文献   

11.
Heterogeneous reactions of NO2 and HNO3 at sub-ppm levels with individual sea-salt and mineral particles were investigated. Particles deposited on filters and on electron microscope grids placed in a Teflon reaction chamber, were exposed to NO2 or HNO3 under controlled conditions. Experiments were carried out under dark conditions and were repeated under u.v. radiation (solar simulation). Nitrates formed on the particles were determined by bulk and individual particle analyses. Individual sea-salt and mineral particles were observed in a transmission electron microscope for the presence of nitrate on the particle surface.The formation of nitrates on sea-salt particles under dark conditions, was in the range of 0.1–3.3 mg NO3 g−1 NaCl. Higher values were obtained for mineral particles: 0.2–8.2 mg NO3 g−1 aerosol ([NO2] =0.18 and 0.54 ppm; [HNO3] = 0.04 ppm; exposure time 1–7 days; relative humidity = 70%). The formation of nitrates on sea-salt particles increased from 3.0 to 16.1 mg NO3 g NaCl when u.v. radiation was added. Mineral particles did not show a significant increase in nitrate formation under u.v. radiation.Microscopy showed that about 50% of the soil particles reacted with NO2 and HNO3 to form mixed nitrate particles. Almost all sea-salt particles (above 95%) reacted with both gases, although the reaction was not complete and took place only on the particle surface.Application of electron microscopy and a specific microspot technique provided direct evidence for the formation of nitrate on sea-salt and mineral particles exposed to NO2 and HNO3.  相似文献   

12.
The concentrations of PM-10 were measured for 2 weeks in the winter of 1988 as part of the Total Human Environmental Exposure Study (THEES). Samples were taken simultaneously in a small city, Phillipsburg, NJ for outdoor and indoor microenvironments, and with personal monitors on non-smokers. There were four outdoor sites, eight indoor sites and fourteen individuals wearing personal monitors. The mean concentrations were 66, 48 and 42 μg m−3 for the personal, outdoor and indoor sites, respectively, with the personal samplers having 8.8% of the 24h averages above 150 μg m−3. The higher outdoor averages with respect to indoors were suspected to be related to more prevalent outdoor sources of coarse particles < 10 μm in diameter, and the lack of residential smokers to contribute to the indoor respirable subfraction. There was one day during the period when all the outdoor sites exceeded the 24 h PM-10 standard. Increased outdoor levels were also reflected in elevated indoor samples and the personal samples on that day. These would be a result of direct outdoor exposures and the penetration of outdoor PM-10 to the indoors.  相似文献   

13.
The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N2O5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with∼10ppm of N2O5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N2O5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10−18to5 × 10−18 cm3 molecules−1 s−1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10−18to30 × 10−18 cm3 molecules−1 s−1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO2, N2O5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N2O5 were of the order of1 × 10−19−1 × 10−18 molecules−1s−1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N2O5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N2O5 degrade particle-bound PAH or to form nitro-PAH from PAH arenot very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)  相似文献   

14.
A field was conducted in Warren, MI, during the 1987/88 winter period to examined the reaction of HNO3 with particulate salt from road deicing. Samples of gases and particles were collected on a daily basis over a 4-month period. If HNO3 reacts with particulate salt, particles of sodium nitrate will be formed and gaseous hydrochloric acid will be released. Thus, during the periods of high salt concentrations, one would expect increases in HCl and particulate NO3 and a decrease in HNO3. The effect was observed, although the total amount of NaNO3 formed was not large. The increase in particulate NO3 did not appear in the large particle mode. Although more than 40% of the salt was present as very large particles (> 8 μm), most of the surface area was associated with small particles. Since the reaction occurred at the particle surface, the NO3 appeared in the small particle mode. Large-particle nitrate has been observed in association with sea salt and crustal particles and has also been attributed to reactions with HNO3. These cases will be reconsidered based on the road salt results.  相似文献   

15.
This work demonstrates the existence of a linear relation between the deposition velocity of ammonia and the friction velocity measured above a spruce stand in the western part of Denmark. In order to estimate the ammonia deposition velocity and flux to a Norway spruce forest, concentration gradients of ammonia and several meteorological parameters were measured in a meteorology tower during two periods, 1 week in spring and 1 week in late summer 1991. The estimated deposition velocities lie in the range −0.125 to 0.201 m s−1, with a mean of 0.026 m s−1. The deposition velocity and the flux were generally largest in the afternoon. On the basis of 24-h measurements of ammonia and routine meteorological measurements the relation between deposition velocity and friction velocity is extrapolated to an estimate of the average flux for the growing season May to September 1991. The estimate gave an average flux of 87 μg NH3N m−2 h−1 (=0.02 μg NH3N m−2 s−1). The average deposition velocity for the period was 0.045 m s−1.  相似文献   

16.
This study reports the diurnal patterns in the concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and total suspended particulate matter (TSP) in the urban atmosphere of Varanasi city in India during 1989. The city was divided into five zones and three monitoring stations were selected in each zone.Ambient concentrations of NO2 and SO2 were maximum during winter but ozone and TSP concentrations were highest during summer. The measured maximum concentrations (2-h average) were 150 and 231 μg m−3 (0.078 and 0.086 ppm) for NO2 and SO2, respectively, for the winter season. Ozone and TSP concentrations reached a maximum of 160 (0.08 ppm) and 733 μg m−3, respectively, in the summer. NO2 and SO2 concentrations peaked in the morning and evening. Peak concentrations of O3 occurred in the afternoon, generally between noon and 4 p.m. Maximum concentrations of O3, NO2, SO2 and TSP were measured in zones I and II, and minimum in zone V.  相似文献   

17.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH4+, NO3, and SO42−. Gaseous NH3 was frequently present at levels equal to or exceeding the aerosol NH4+. Maximum level were 3800, 3100, 690 and 4540 neq m−3 for NH4+, NO32− and NH3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH4+, NO3 and SO42−, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient.The chemistry at Riverside is controlled by the balance between HNO3 production from NOx emitted throughout the Los Angeles basin and NH3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH3 source. Continued formation of HNO3(g) in this air mass eventually depletes the residual NH3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH3 levels would decrease the total NO3 in the atmosphere, but nearly all remaining NO3 would exist as HNO3. Fogwater in the basin would be uniformly acidic.  相似文献   

18.
Cigarette smoking is a particle-related exposure. Studying the characteristics of the particle size distribution of cigarette smoke can aid in providing knowledge of smoke aerosol attributes. We used an electrical low pressure impactor (ELPI) to measure the particle size distribution of mainstream cigarette smoke generated by a smoking machine and provided a continuum of particle sizes of cigarette smoke from a whole cigarette. The results showed that the aerodynamic diameters (D, geometric mean of a channel) of particles ranged from 0.021 to 1.956 ~m, and the number concentrations were on the order of 105-109 cm-3 for different sizes of particles. The particle number of the size category below 0.1 p,m approximated that of the category 0.1-2.0 Ixm, and the particles in the size category of 0.1-2.0 μm contributed extremely heavily to total particulate mass. In addition, the results with small samples indicated that the tar yields normalized per milligram of nicotine showed an approximately linear increase with increasing concentration of total particles.  相似文献   

19.
To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 104 cm-3. nm-1 on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 μm) is larger than on coarse particles (> 2.1 μm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO42-.  相似文献   

20.
The shrub-steppe area near Shaartuz, Tadzhik, S.S.R., is shown to be a net accumulator of dust despite being an occasional source of dust. For the accumulation of the dust to form the observed surface crust, a net deposition of about 290–490 g m−2 yr−1 of particles smaller than 20 μm is required, depending on the duration of the deposition period. The particles smaller than 20 μm are mixed with particles brought up from the sandy material below the surface crust by bioturbation and are incorporated into the surface crust. Measurements during the 16 and 20 September 1989 dust storms provided a total deposition of 41.1 g m−2 of particles smaller than 20 μm. Because 10–30 dust storms are observed at Shaartuz, the measured average dust storm deposition would yield 206–617 g m−2 yr−1. This range of deposition is of the order of that needed to provide a mass balance for the observed crust formation. Cryptogams (including algae, lichen, and moss) and rainwater are the main agents of incorporation of the aeolian dust into a stable soil crust. The role that the vascular plants played at the Shaartuz site was to reduce the rate of soil movement to levels where the cryptogamic crusting was possible. the observed mechanisms of dust deposition followed by crust incorporation are possibly an important processes in loess formation in Central Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号