首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snow samples from central and southern California were collected during the winter of 1987–1988 from there storms and analyzed for carbonyl compounds and carboxylic acids. Approximately 90% of the samples contained total aldehyde concentrations up to 40 μM. Formaldehyde and acetaldehyde were the dominant aldehydes observed; secondary aldehydes included glyoxal, methylglyoxal, and benzaldehyde. The highest aldehyde concentrations were observed in snow collected in areas where deciduous and coniferous forests are widespread. However, these aldehydes can be attributed also in part to primary and secondary products of anthropogenic activities. Formic and acetic were analyzed in all measured samples with concentrations ranging from 0.5 to 4.9 μM for HCOOH and from <0.3 to 13.4 μM for CH3COOH. Maximum contribution of organic acids to precipitation-free acidity, calculated by assuming that the only sources of the measured formate and acetate were their respective acid forms, averaged 43.1% for samples with a pH⩽5. A consistent correlation between NH4+ and acetate was found. [CH3COOH] exceeded [HCOOH] in about 50% of the samples with the highest levels for CH3COOH measured in cores collected from lower elevated locations adjacent to the Los Angeles basin. Results presented in this paper suggest that dry deposition and/or scavenging of carbonyl compounds and organic acids to snow may be important sinks for these compounds.  相似文献   

2.
As part of the Southern California Air Quality Study (SCAQS), ambient levels of gas phase formic acid and acetic acid have been measured at four locations: a ‘control’ site (San Nicholas Island), a source-dominated coastal site (Long Beach) and two inland smog receptor sites (Claremont and Palm Springs). Samples were collected on alkaline traps and were analyzed by size exclusion liquid chromatography with ultraviolet detection. Levels of gas phase formic acid (up to 19 ppb) and acetic acid (up to 17 ppb) exhibited diurnal (frequent night-time maxima), spatial and seasonal variations. During summer smog episodes, concentrations increased from 0.6 ppb at the ‘control’ site to up to 13–19 ppb at the inland smog receptor sites reflecting primary emissions and in situ formation during transport inland. The acetic acid/formic acid (A/F) ratio decreased from coastal to inland sites. At the coastal site levels of both acids and the A/F ratio were substantially higher during the fall than during the summer.  相似文献   

3.
Emission rates, in situ formation rates and removal rates by dry deposition are estimated for formic acid (HCOOH, C1) and acetic acid (CH3COOH, C2), which are the most abundant acids in southern California air and together account for much of the airborne acidity and are the leading contributors to acid dry deposition. Using data for eight unreactive tracers, direct emission rates during the fall 1987 are estimated to be 5.6 and 12.8 metric tons d−1 for C1 and C2, respectively, at a coastal source-dominated site. These emissions rates increase to 9.6(C1) and 20.4(C2) metric tons d−1 during the summer. In situ formation in the atmosphere via the ozone-olefin reaction is an important source for both acids. This reaction produces an estimated 25.0 and 10.1 metric tons d−1 of C1 and C2, respectively, during the day and 34.5 (C1) and 4.3 (C2) metric tons d−1 at night. More acetic acid than formic acid is emitted by direct sources, with C2/C1 emission rate ratios of 2.1–2.3. The reverse is true of in situ formation, with C1/C2 production rate ratios of 2.5 (day) and 8.0 (night). Dry deposition removal rates depend on season (fall > summer) and location (inland > coastal) and are 22–52 metric tons d−1 for C1, and 32–83 metric tons d−1 for C2. Source (emissions + in situ formation) and sink (dry deposition) terms are of the same magnitude in all six cases studied and balance each other well in three of these cases. Uncertainties in emission, in situ production and removal rates are discussed and reflect uncertaintes in olefin and unreactive tracer emission rates, yields of organic acids from the Criegee biradical (ozone-olefin reaction), and dry deposition velocity, respectively.  相似文献   

4.
Concentrations of atmospheric H2O2 were measured in air, rain, cloud and dew samples in forested areas of the San Bernardino Mountains, southern California, from spring through fall of 1987–1990 O3 measurements in air were also conducted for comparison. Typical ranges of H2O2 concentrations measured were 1–3 ppb in air, 10–90 μM in rain and cloud water, and < μM in dew. The results show that gas-phase H2O2 concentrations were slightly higher at nighttime than at daytime or nearly constant throughout a 24-hr period, whereas O3 concentrations were highest during the afternoon, when polluted air masses from Los Angeles carried by daily sea breezes reached the mountain region. Afternoon concentrations of gaseous H2O2 and O3 in the mountain region were compared with those measured in Los Angeles urban sites to elucidate the regional variation of these oxidants. The results show that ambient concentrations of H2O2 and O3 were about 50–100% higher at the mountains sites than at the Los Angeles sites.  相似文献   

5.
This paper reports the results of measurements of formic and acetic acid at four sites located along the western slope of the Sierra Nevada and compares the results with those of earlier studies. Formic acid concentrations ranged from approximately 1 to 40 ppb; those of acetic acid ranged from approximately 0.5 to 13 ppb. Mean formic acid concentrations were 18 ppb at Tehachapi, located at the southern extremity of the range, and between 12 and 13 ppb at the three other sites. Mean acetic acid concentrations ranged from 3.9 ppb at Blodgett Experimental Forest, located at the northern extremity, to 8.0 ppb at Yosemite. Comparison with previous studies indicates that carboxylic acid levels measured in the Sierra Nevada are higher than those measured in past studies, and in many cases average concentrations of both formic and acetic acids observed during this study were greater than the previously reported maxima. Comparisons were also made to nitric acid concentrations measured at Yosemite and Giant Forest from October 1986 to September 1987. At Yosemite, annual nitric acid concentrations averaged 0.20 ppb during the day, and 0.06 ppb at night; and at Giant Forest, nitric acid averaged 0.17 ppb during the day, and 0.05 ppb at night. Thus, the high formic and acetic acid concentrations observed in this study suggest that carboxylic acid are major contributors to the overall flux of ambient acid deposition in the western Sierra Nevada.  相似文献   

6.
In order to efficiently remove volatile organic compounds (VOCs) from indoor air, onedimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Comparedwith the strong and corrosive inorganic acids, CH3COOH was not only safer andmore environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. Itwasobserved that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor ofmore than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant tomoisture than the other TiO2 nanocrystals and P25.  相似文献   

7.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH4+, NO3, and SO42−. Gaseous NH3 was frequently present at levels equal to or exceeding the aerosol NH4+. Maximum level were 3800, 3100, 690 and 4540 neq m−3 for NH4+, NO32− and NH3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH4+, NO3 and SO42−, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient.The chemistry at Riverside is controlled by the balance between HNO3 production from NOx emitted throughout the Los Angeles basin and NH3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH3 source. Continued formation of HNO3(g) in this air mass eventually depletes the residual NH3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH3 levels would decrease the total NO3 in the atmosphere, but nearly all remaining NO3 would exist as HNO3. Fogwater in the basin would be uniformly acidic.  相似文献   

8.
Rainwater samples were collected in Los Angeles, during 1985–1991 to determine concentration levels, sources and deposition rates of atmospheric H2O2, aldehydes and organic acids, in addition to major cations, anions and pH. Volume-weighted mean concentrations of H2O2, aldehydes (formaldehyde + acetaldehyde + glyoxal + methylglyoxal) and organic acids (formic acid + acetic acid) in rain collected at Westwood were 4.4., 3.9 and 16.5 μM, respectively, during the 6-year study period. Monocarboxylic organic acids were estimated to account for 27% (2–80%) of total free acidity (as on overall average) in rain collected at Westwood, whereas sulfuric acid and nitric acid accounted for 39% and 34% of the total acidity, respectively. Concentrations of aldehydes were strongly dependent on precipitation volume and decreased with increasing precipitation volume, whereas H2O2 and organic acids were only weakly dependent on precipitation volume. These results indicate that concentrations of aldehydes in rain are mainly controlled by dilution, whereas H2O2 and organic acid concentrations are controlled by other factors, such as decomposition of H2O2 by reacting with S(IV) and continuous aqueous formation/decomposition of organic acids by reactions involving aldehydes, dissolved OH radicals and H2O2. Principal component analyses indicate that aldehydes in rainwater mainly originate from gases and aerosols derived from anthropogenic sources, whereas the sources of H2O2 and organic acids in rain do not correlate with anthropogenic sources or marine and continental sources. There is good agreement between reported gas-phase concentrations of H2O2, aldehydes and organic acids in Los Angeles and calculated equilibrium concentrations of these chemical species from their rainwater concentrations and Henry's law constants. Temporal variations of concentrations of chemical species indicate that H2O2, aldehydes and organic acids were highest in the early afternoon. Summer rains contained the highest concentration of these chemical species, suggesting the photochemical activities during rain storms significantly affect their concentration levels. Estimation of annual rate of wet and dry depositions of H2O2, aldehydes and organic acids for the period studied, indicates that 84% of H2O2, 97% of aldehydes and 94% of organic acids, respectively, are annually scavenged from the atmosphere, by dry deposition, which is the dominant process for removal of these atmospheric pollutants in Los Angeles.  相似文献   

9.
Interactions of the three common atmospheric bases, dimethylamine ((CH3)2NH), methylamine (CH3NH2), ammonia (NH3), all considered to be efficient stabilizers of binary clusters in the Earth's atmosphere, with H2SO4, the key atmospheric precursor, and 14 common atmospheric organic acids (COAs) (formic, acetic, oxalic, malonic, succinic, glutaric acid, adipic, benzoic, phenylacetic, pyruvic, maleic acid, malic, tartaric and pinonic acids) have been studied using the density functional theory (DFT) and composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA)(H2SO4), (COA)(B1), (COA)(B2) and (COA)(B3) dimers and (COA)(H2SO4)(B1), (COA)(H2SO4)(B2) and (COA)(H2SO4)(B3) trimers, where B1, B2 and B3 refer to (CH3)2NH, CH3NH2 and NH3, respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H2SO4 have been studied. Our investigation shows that interactions of H2SO4 with COA, (CH3)2NH, CH3NH2 and NH3 lead to the formation of more stable mixed dimers and trimers than (H2SO4)2 and (H2SO4)2(base), respectively, and emphasize the importance of common organic species for early stages of atmospheric nucleation. We also show that although amines are generally confirmed to be more active than NH3 as stabilizers of binary clusters, in some cases mixed trimers containing NH3 are more stable thermodynamically than those containing CH3NH2. This study indicates an important role of COA, which coexist and interact with that H2SO4 and common atmospheric bases in the Earth atmosphere, in formation of stable pre-nucleation clusters and suggests that the impacts of COA on new particle formation (NPF) should be studied in further details.  相似文献   

10.
The concentrations of aerosols (NH4NO3, (NH4)2SO4 and NH4Cl) and of gases (HCl(g), HNO3(g), NH3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl(g) and HNO3(g) are observed. NH4Cl and NH4NO3 aerosols represent a major fraction of the Cl and NO3 aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO42− were found in small aerosols, which are attributed to the aqueous phase oxidation of SO2 under the influence of high pH due to the presence of NH3. Differences in SO42− concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO2(g) + SO42−. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.  相似文献   

11.
Indoor and outdoor concentrations of the air pollutants ozone, NO2, SO2, H2S, total reduced sulfur (TRS), peroxyacetyl nitrate (PAN), methyl chloroform and tetrachloroethylene, have been measured at three southern California museums. Indoor maxima were 175 ppb for NO2, 77 ppb for O3, 0.7 ppb for PAN, 1.2 ppb for C2Cl4, >6.3 ppb for CH3CCl3, 2.5 ppb for SO2, 1.4 ppb for TRS, and 46 ppt for H2S. Indoor levels and indoor/outdoor (I/O) ratios for the chlorinated hydrocarbons pointed out to indoor sources. Outdoor and indoor levels of SO2 and TRS were low at all three museums, but I/O ratios for SO2 were high and averaged 0.89. H2S concentrations were low, 16–46 ppt at one museum and less than 6 ppt at the other two museums. I/O ratios for the air pollutants with outdoor sources (ozone, PAN and NO2) showed substantial variations, from low values of 0.02–0.33 at locations without influx of outdoor air to high values of 0.85–0.88 at locations experiencing high influx of outdoor air. Of the 10 institutions we have surveyed in southern California to date, eight exhibit high I/O ratios, e.g. 0.60–1.00 for PAN. Of the four museums surveyed that were equipped with HVAC and chemical filtration, only two yielded the expected low I/O ratios.  相似文献   

12.
Ozone concentrations at a remote site in the Rocky Mountains of southwestern Alberta averaged 43.4 ppb over a 2 year period and the Canadian air quality objective of an 80 ppb hourly average was exceeded 1.5% of the time. The diurnal variation in O3 concentrations was small, 2.9 ppb, indicative of a remote location, above the nocturnal inversion and not greatly influenced by local emissions. During the period when O3 concentrations were highest, winds were generally from the southwest, suggestive of the long range transport of anthropogenic pollutants from distant sources rather than the generation of O3 from local emissions. In contrast, hourly O3 concentrations at two regional air quality monitoring sites showed an average diurnal variation of 14 ppb. Only two hourly averages exceeded 80 ppb during the 2 years, and the mean O3 concentration was 26 ppb. When these regional sites were within the urban plume from Calgary, the O3 concentrations were depressed to a mean of 18 ppb. Ozone concentrations in downtown Calgary averaged 13 ppb. Under Alberta climatological and meteorological conditions, hourly O3 objectives are most likely to be exceeded in remote areas, rather than in cities or in areas under the direct influence of urban emissions.  相似文献   

13.
为了解地膜覆盖对菜地剖面温室气体的影响,本研究利用扩散箱法测定了2014-2015年西南地区辣椒-萝卜轮作菜地10、20和30 cm土壤剖面的CH4、CO2和N2O的浓度.结果表明,整个观测季覆膜(F)和不覆膜(NF)处理土壤剖面的CH4浓度均随土壤深度增加而降低.与NF相比,覆膜极显著提高了辣椒季30 cm土层的CH4浓度(p<0.01),但极显著降低了萝卜季20 cm土层的CH4浓度(p<0.01),且对观测季其他土层的CH4浓度无显著影响(p>0.05);与CH4相反,整个观测季覆膜和不覆膜处理土壤剖面的CO2浓度均随土壤深度增加而增加.与NF相比,覆膜显著提高了辣椒季30 cm土层和萝卜季各土层的CO2浓度(p<0.05);与CO2相似,整个观测季节覆膜和不覆膜处理土壤剖面的N2O浓度均随土壤深度增加而增加.与NF相比,覆膜对辣椒季各土层的N2O浓度影响不显著(p<0.05),却显著增加了萝卜季各土层的N2O浓度(p<0.05).总之,在辣椒季,地膜覆盖有利于深层土壤(30 cm) CH4和CO2的积累,而对N2O的影响却不显著.在萝卜季,地膜覆盖不利于中层土壤(20 cm) CH4的积累,但有利于各土层CO2和N2O的积累.Pearson相关性分析结果表明,在辣椒季,各处理10 cm土层的CH4浓度与土壤充水孔隙度(WFPS)呈显著正相关(p<0.05),各处理10 cm土层的CO2浓度与各环境因子相关性均不显著(p>0.05).与CO2类似,覆膜处理10 cm土层的N2O浓度与各环境因子相关性不显著(p>0.05),但不覆膜处理10 cm土层的N2O浓度与WFPS呈显著正相关(p<0.05).在萝卜季,各处理10 cm土层的CH4浓度与各环境因子相关性不显著(p>0.05),各处理10 cm土层的CO2和N2O浓度与地下10 cm温度和土壤氮素呈显著正相关(p<0.05).WFPS是影响10 cm土层CH4浓度的主要因素,土壤温度和土壤氮素是影响10 cm土层CO2浓度的主要因素,WFPS、土壤温度和土壤氮素是影响10 cm土层N2O浓度的主要因素.  相似文献   

14.
西双版纳地区露水资源分析   总被引:8,自引:1,他引:8  
研究了西双版纳地区露的时空分布特征、形成机制及其与雾和逆温的关系,同时分析了露的农业气候意义。结果表明,西双版纳地区露日数呈干季较多、雨季较少的分布特征;干季的露水对本地区热带植物的生长具有重要的生态意义,可部分缓解干季降雨的不足,避免或减弱冷冻害的发生。  相似文献   

15.
Organic acids are important contributors to the acidity of atmospheric precipitation,but their existence in the Chinese atmosphere is largely unclear.In this study,twelve atmospheric gaseous organic acids,including C1-C9 alkanoic acids,methacrylic acid,pyruvic acid,and benzoic acid,were observed in the suburb of Wangdu,Hebei Province,a typical rural site in the northern China plain from 16th December,2018 to 22nd January,2019,using a Vocus@Proton-Trans...  相似文献   

16.
为解决玉米秸秆干式厌氧发酵系统因乙酸积累而致发酵失败、工程运行不稳定等问题,利用气相色谱仪对玉米秸秆干式厌氧发酵过程中w(乙酸)和w(CH4)进行检测,结合相关性分析和回归分析等方法,研究了乙酸动态产生趋势、w(TS)(TS为总固体)与w(乙酸)的相关性,以及w(乙酸)对CH4产生的作用机制. 结果表明:发酵过程中w(乙酸)先增后降,w(TS)由20%增至30%,w(乙酸)增加的持续时间由5 d延至15 d. Pearson相关性分析结果表明,w(TS)与w(乙酸) 呈极显著负相关(R<-0.979,P<0.01). 一元线性回归分析得到拟合方程y=-1 214.8w(TS)+668.2,由斜率(-1 214.8)可知,w(TS)对产乙酸过程具有较明显的抑制作用. 玉米秸秆干式厌氧发酵系统内w(乙酸)为160~451 mg/g,随着w(乙酸)的增加,底物CH4产率经历上升、稳定、下降后再稳定和下降4个阶段,其中w(乙酸)为212~312 mg/g时,底物CH4产率(大于120 m3/t,以秸秆干质量计)最大,其次为w(乙酸)在>312~410 mg/g时的80~120 m3/t.   相似文献   

17.
An alternating mesophilic and thermophilic two stage anaerobic digestion(AD) process was conducted. The temperature of the acidogenic(A) and methanogenic(M) reactors was controlled as follows: System 1(S1) mesophilic A-mesophilic M;(S2) mesophilic A-thermophilic M; and(S3)thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand(SCOD) concentrations of41.4–47.0 g/L and volatile fatty acids of 2.0–3.2 g/L. Based on the results, the highest total chemical oxygen demand removal(86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal(96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids(VS) removal in S1, S2, and S3was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore,S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4production, nutrient removal, and microbial community structure.  相似文献   

18.
SO2 measurements made in recent years at sites in Beijing and its surrounding areas are performed to study the variations and trends of surface SO2 at different types of sites in Northern China. The overall average concentrations of SO2 are (16.8 ± 13.1) ppb, (14.8 ± 9.4) ppb, and (7.5 ± 4.0) ppb at China Meteorological Administration (CMA, Beijing urban area), Gucheng (GCH, relatively polluted rural area, 110 km to the southwest of Beijing urban area), and Shangdianzi (SDZ, clean background area, 100 km to the northeast of Beijing urban area), respectively. The SO2 levels in winter (heating season) are 4-6 folds higher than those in summer. There are highly significant correlations among the daily means of SO2 at different sites, indicating regional characteristics of SO2 pollution. Diurnal patterns of surface SO2 at all sites have a common feature with a daytime peak, which is probably caused by the downward mixing and/or the advection transport of SO2-richer air over the North China Plain. The concentrations of SO2 at CMA and GCH show highly significant downward trends (-4.4 ppb/yr for CMA and -2.4 ppb/yr for GCH), while a less significant trend (-0.3 ppb/yr) is identified in the data from SDZ, reflecting the character of SDZ as a regional atmospheric background site in North China. The SO2 concentrations of all three sites show a significant decrease from period before to after the control measures for the 2008 Olympic Games, suggesting that the SO2 pollution control has long-term effectiveness and benefits. In the post-Olympics period, the mean concentrations of SO2 at CMA, GCH, and SDZ are (14.3 ± 11.0) ppb, (12.1 ± 7.7) ppb, and (7.5 ± 4.0) ppb, respectively, with reductions of 26%, 36%, and 13%, respectively, compared to the levels before. Detailed analysis shows that the differences of temperature, relative humidity, wind speed, and wind direction were not the dominant factors for the significant differences of SO2 between the pre-Olympics and post-Olympics periods. By extracting the data being more representative of local or regional characteristics, a reduction of up to 40% for SO2 in polluted areas and a reduction of 20% for regional SO2 are obtained for the effect of control measures implemented for the Olympic Games.  相似文献   

19.
We have measured ambient levels of carbonyls in three major urban areas of Brazil: Sao Paulo, Rio de Janeiro and Salvador. The most abundant carbonyls were acetaldehyde (up to 63 μg m−3, or 35 ppb) followed by formaldehyde (up to 42 μg m−3, or 34 ppb), and acetone (up to 20 ppb). Levels of 10 other aliphatic and aromatic carbonyls were in the range 0–5 ppb. Total carbonyl concentrations were in the range 11–75 ppb. Indoor levels were also measured at several locations in Salvador. High levels of acetaldehyde, 430 μg m−3 or 240 ppb, were measured in a highway tunnel.Using carbonyl/CO concentration ratios, mobile source emissions of carbonyls are estimated for the Sao Paulo area. Ambient levels of acetaldehyde and acetaldehyde/formaldehyde concentration ratios in Brazil are compared to those for other urban areas, and are briefly discussed in relation with the large scale use of ethanol as a vehicle fuel.  相似文献   

20.
利用离子色谱法测量了广州白云山春季降水及广西苗儿山云雾水中的甲酸和乙酸,并同时测定了降水中阴离子(F-,Cl-,SO42-,NO3-)和阳离子(Na+,NH4+,K+,Ca2+,Mg2+。用多元逐步回归、多对多双重筛选回归及R聚类分析的多元统计的数学方法分析了降水中有机弱酸间及与阴阳离子间的关系。讨论了有机酸的来源及其对酸雨中酸度的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号