首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geosynthetic liner systems are generally installed in landfill sites to prevent toxic leachate from escaping into the adjoining environment by utilizing their impervious characteristics. Therefore, it is important to protect the geomembrane from being damaged or destroyed during all phases of landfilling, namely landfill construction, waste tipping and landfill closure. This paper presents firstly the observed performance of a geomembrane liner from a landfill site where the geomembrane liner was installed on the slopes of a Korean landfill; and secondly the results of an inclined board laboratory test. Two types of experiments were conducted to identify the protecting effect of the overlaying geosynthetic on the geomembrane liners. At a testing landfill site, the slope consisted of three different sub-inclines and two 2-m-wide intermediate levels. The sub-inclines were each 8 m in vertical height and their angle of inclination was 1: 1.5 (vertical: horizontal). The reported observations were made for a time period of approximately 1 year, until the landfill was filled with wastes to the top of the uppermost slope. In addition, inclined board laboratory tests were carried out. During the inclined board test, a base table is inclined slowly and steadily until the block located on the base table starts to slide, when the tension and displacements of two geosynthetics, namely the geomembrane liner and protecting geotextile, are measured. In conclusion, test results showed that the down-drag force generated by waste accumulation and sliding of upper material was to a large extent dissipated through the elongation of the protecting geosynthetic overlying the geomembrane and thus was not transferred to the geomembrane. Unless the protecting geosynthetic undergoes structural failure, this stress relaxation phenomenon continues to occur so that the magnitude of tensile force to be applied on the geomembrane remains marginal.  相似文献   

2.
A review of aqueous-phase VOC transport in modern landfill liners   总被引:3,自引:0,他引:3  
Leachates from municipal solid waste (MSW) and hazardous waste landfills contain a wide range of volatile organic compounds (VOCs) in addition to inorganic compounds. VOCs have been shown to migrate and contaminate the surrounding environment and impair the use of groundwater. Therefore, the effectiveness of modern landfill liner systems to minimize migration of VOCs is of concern. Most modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner or a geosynthetic clay liner. The geomembrane is often believed to be the primary barrier to contaminant transport. However, for VOCs, the clay component usually controls the rate of transport since VOCs are shown to diffuse through geomembrane at appreciable rates. Additionally, analyses have shown that transport of volatile organic compounds (VOCs) generally is more critical than transport of inorganic compounds (e.g., toxic heavy metals), even though VOCs are often found at lower concentrations in leachates. Therefore, the effectiveness of modern landfill liner systems to minimize migration of VOCs and transport of VOCs through clay liners and modeling of transport through composite liners merit scrutiny. This paper presents a review of recent research by the author and others on these topics. A systematic and comprehensive approach to determine mass transport parameters for transport of VOCs in liquid phase through compacted clay liners, geosynthetic clay liners (GCLs), and geomembranes has enabled to develop realistic models to predict mass flux of VOCs through modern composite liners and provide a quantitative basis to evaluate potential for transport of dissolved VOCs and the equivalency of different composite liners.  相似文献   

3.
A recent draft report from the U.S. Environmental Protection Agency's Robert S. Kerr Environmental Research Laboratory in Ada, Oklahoma, entitled ?General Methods for Remedial Operation Perforrmance Evaluation,”? establishes protocols for evaluating and optimizaing the performance of groundwater pump-and-treat systems (EPA 1992). For the first time, EPA proposes guidelines for determining when these systems can be terminated, regardless of whether a site's remediation goals are met. This column reviews the chemical and physical limits of pump-and-treat technology and discusses how these protocols can improve pump-and-treat performance and determine when it may be time to pull the plug.  相似文献   

4.
Top covers of waste landfills conventionally contain a drain layer over a 1(low-permeable clay liner usually containing smectite minerals. The rate of percolation of the clay liner, which may require tens of years to become water-saturated, determines the downward transport of ions released from the underlying waste to and through the bottom clay liner. The percolation rate is controlled by the composition and density of the tipper liner, which should be as tight as possible. This implies a high density and therefore a high swelling potential which must be moderated by proper design. The bottom clay liner is a less effective and reliable barrier since cation exchange will increase the hydraulic conductivity and cause a significant rise in percolation rate and risk of chemical attack by the percolate. The top liner will undergo very moderate strain if the ash fill is effectively compacted and undergoes little self-compaction. Processes that may cause degradation are freezing and drying and require proper design. In this paper the authors examine the performance of ash-fills isolated by clay liners and conclude that the most important issue is to design and construct the top liner to be as impermeable as possible paying less attention to the tightness of the bottom layer.  相似文献   

5.
New adaptations of analytical equations for predicting the impact of solute transport through composite landfill liners on groundwater quality for steady-state conditions are presented. Analytical equations are developed for evaluating average concentration and mass flow rate in an underlying aquifer resulting from diffusion of volatile organic compounds (VOCs) through intact composite liners and transport of inorganic constituents through defects in composite liners. The equations are applied to evaluate the effectiveness and equivalency of composite liners having either a 0.6 m-thick compacted soil liner or a 6.5 mm-thick geosynthetic clay liner (GCL) overlying an intermediate attenuation layer and an aquifer having horizontal flow. Example analyses for designing composite liners meeting particular performance criteria are also provided. The analytical equations are relatively simple to apply and can be used for preliminary design and analysis, to evaluate experimental results, and to possibly verify more complex numerical models for evaluating the impact of landfills on groundwater quality if consistency of the assumptions of the analytical equations and the more complex numerical models can be specified.  相似文献   

6.
 Some minimum design requirements for landfill liner systems were compared, and the performance of several Japanese liner systems was investigated by two-dimensional (2D) contaminant transport analysis. We demonstrate that (1) the performance of each system specified by the Japanese Ministry of Health and Welfare (at present the Ministry of Health, Labor, and Welfare) varies, (2) the adsorption characteristics of the mineral barrier has a significant effect on the contaminant transport process, and (3) a geomembrane layer in the barrier system is very efficient in reducing the peak concentration of contaminants in the groundwater beneath a landfill even if the geomembrane has a number of defects. Under the conditions considered, the analysis results show that a liner system without a geomembrane layer should be avoided. Received: July 4, 2001 / Accepted: March 26, 2002  相似文献   

7.
Remediation results depend on thorough consideration of all the forces that influence contaminant behavior, including how the contaminant is distributed and the site's hydrogeology, as well as the physical, chemical, and biological factors involved in contaminant mobility and persistence. This information supports a cleanup project's initial investigation, helping decide the goals of the later remediation method, the usefulness of specific technologies, and the method's ultimate performance. This article discusses how the principal environmental and chemical processes influence contaminant fate and transport and explores four case histories that illustrate how that influence can help predict whether a project's goals are achievable, whether the project is needed at all, and whether those goals were actually achieved.  相似文献   

8.
The objective of the study was to develop a low cost and environmentally friendly liner system for a landfill bioreactor to harness energy from waste. The landfill bioreactor test cell was constructed and evaluated for performance under dry tropical conditions of Sri Lanka. The research was carried out from March 2009 to September 2010. The clay-waste polyethylene-clay composite liner system was developed and permeability was tested. The permeability values of the liner under both saturated and unsaturated conditions at the high estimated hydraulic head of 86.2 cm were in between 6.3 × 10−8 and 2.6 × 10−8 cm/s. The permeability of the liner under waste filled condition varied between 2.17 × 10−9 and 8.15 × 10−9 cm/s, which satisfies the standard permeability value. Thus, the results were below the minimum requirement at very high estimated leachate head. After loading the test cell, leachate and permeate characteristics were analyzed for 273 days, from January 2010 to September 2010. The study showed the relationships among various parameters including pH, electrical permeability, chemical oxygen demand, biological oxygen demand, ammonia, nitrate, phosphate, total solids, volatile solids, total suspended solids and volatile suspended solids. The results of the analysis indicated that there are significant differences in the values of leachate and permeate parameters. The permeate parameters had values very much lower than those of leachate. It reveals that the clay-waste polyethylene-clay composite liner system reduced the concentration of these parameters when the leachate passed through the liner. The biofilm formed in waste polyethylene within the liner may have degraded most of organic materials found in the leachate when it passed through the liner. Therefore, the clay-waste polyethylene-clay composite liner system can be applied for full scale landfill bioreactors, particularly for Asian developing countries, due to better performance and more environmentally friendly characteristics.  相似文献   

9.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

10.
The process of designing a remedy for contaminated groundwater historically has not commonly included climate-future, hydrologic, and biogeochemical aquifer characteristics. From experience, the remedy design process also has not consistently nor directly integrated or projected future hydrologic and biogeochemical effects of the human-induced or developed environment—aka the anthropogenic influence—on potential remedy performance. The apparent practice of (1) not regularly assessing anthro-influenced hydrological (termed here as anthrohydrology) or biogeochemical characteristics (collectively hydrobiogeochemistry) of a site and (2) rarely accounting for future climatic shifts as design factors in remedy design may be due, in part, to the general practice-level view that groundwater remediation systems (whether in situ or ex situ) have seldom been anticipated to last more than a few years (or one or two decades at the most). Second, methods to reliably and quantitatively estimate site-specific, climate-future shifts in groundwater conditions using global and/or regional climate models and the resultant impacts on contaminant plume characteristics have not been readily available. The authors here suggest that while the concept of remedy design resilience and durability, within an envelope of climate change and anthropogenic influence, has been discussed in some technical circles as a component of “sustainable remediation,” we have found that direct application of these technical concepts in quantifiable terms remains rare. By incorporating the potential influence of future hydrobiogeochemical scenarios into remedy design, however, the design process could account for reasonable climate-induced influence on the groundwater system for a given site. These scenarios could then be applied within the remedy selection process to assess performance durability under potentially changing hydrologic, biological, and chemical conditions.  相似文献   

11.
Closure often of the eleven waste management units covering almost seventy-five acres at the U.S. Department of Energy's Oak Ridge Y-12 Plant has been completed. Costing about $47 million, DOE's accelerated Closure and Post Closure Program (CAPCA) has involved structural waste stabilization and installation of a multimedia cap to contain ferrous metals, salts, uranium, solvents, ethylenediamine tetraacetic acid (EDTA), oils and coolants, asbestos, and material contaminated with radioisotopes. Designs for closure of the remaining waste unit—used for disposing depleted uranium chips, metals, oxides, organic and caustic chemicals, aged ethers, and more—are being prepared now; they will address the potentially explosive and pyrophoric nature of these wastes. This article describes CAPCA's innovative design and construction methods, as well as how its management coordinated the tight schedules mandated by agreements with federal and state regulatory agencies.  相似文献   

12.
Sustainable remediation concepts have evolved during the decade 2007–2017. From the establishment of the first Sustainable Remediation forum (SURF) in 2007, to publication of ASTM and ISO standards by 2017. Guidance has been developed around the world to reflect local regulatory systems, and much has been learned in applying sustainability assessment to contaminated site management projects. In the best examples, significant improvements in project sustainability have been delivered, including concurrent reduction of the environmental footprint of the remediation program, improved social performance, and cost savings and/or value creation. The initial advocates for the concept of sustainable remediation were quickly supported by early adopters who saw its potential to improve the remediation industry's performance, but they also had to overcome some inertia and scepticism from other parties. During the debates and discussions that occurred at numerous international conferences and SURF workshops around the world, various opinions were formed and positions stated. Some proved to be correct, others not so. With the recent publication of ISO Standard 18504 and the benefit of a decade's‐worth of hindsight on sustainable remediation programs implementation and project delivery, this paper summarizes a number of myths and misunderstandings that have been stated regarding sustainable remediation and seeks to debunk them. Sustainable remediation assessment shows us how to manage unacceptable risks to human health and the environment in the best, that is to say the most sustainable, way. It provides the contaminated land management industry a framework to incorporate sustainable development principles into remediation projects and deliver significant value for affected parties and society more broadly. In dispelling some myths about sustainable remediation set out in this paper, it is hoped that consistent application of ISO18504/SuRF‐UK (or equivalently robust guidance) will facilitate even wider use of sustainable remediation around the world.  相似文献   

13.
Historically drinking water contaminated with wastewater discharged from nearby communities has been a major public health problem whose solution was directed towards the treatment of drinking water rather than of the source of contamination. The increased need for deliberate wastewater reuse has stimulated greater interest in the ability of wastewater treatment processes to produce a product in which the risk of infection, upon reuse, is reduced to an acceptable level. A brief overview of the disease agents involved, human dose-response considerations, microbial standards, and treatment plant reliability is presented. Selected experiences with the question as to how our terrestrial experience can be applicable to advanced life support systems is addressed.  相似文献   

14.
Clay borrow materials intended for use in a clay liner system were found to be contaminated by low concentrations of volatile organic chemicals (VOCs). The suspected source of contaminants was a nearby Superfund site where similar compounds were found in soil and groundwater. Based on these observations, questions were raised regarding the potential effects of VOCs on the performance of the clay materials as a landfill liner.Laboratory experiments were conducted to evaluate the effects of three levels of soil precontamination and two types of permeants. Atterberg tests showed that the precontaminations (acetone and m-xylene) and the simulated leachate (methylene chloride, trichloroethylene, and toluene), at the concentrations used, did not impact clay-pore fluid interaction. Sedimentation tests showed that the impact of methylene chloride, trichloroethylene, and toluene on sediment volume and rate of settlement was not detectable up to the maximum concentration level of 100 ppm for each chemical.From the permeation tests, acetone in the precontaminated samples was generally flushed out within three pore volumes but m-xylene was not detected (above the detection limit of 0.01 mg 1−1) in the permeant effluent. The stabilized permeabilities of the specimens ranged from 0.2 × 10−7 to 3.0 × 10−7 cms−1. It was found that precontamination of the clay at the levels studied did not affect organic chemical leachate transport/adsorption discernibly when compared with clean clay, and no measurable retardation or adsorption of VOCs in clay liners occurred in either clean clay or precontaminated clay.  相似文献   

15.
Efficient trash collection and volume reduction becomes very important during extended, manned space flight missions because of the high rate of crew member generated trash and the limited volume available to store this trash. Trash management in manned space flight vehicles requires that the following considerations be addressed: definition of the trash model including quantities/rates of generation and the physico-chemical characteristics of the trash; methods of collection and temporary stowage prior to treatment or processing; the method of treatment/processing to affect biochemical stabilization and volume reduction; and storage of treated/ processed trash prior to final disposition. This paper discusses trash management design approaches with focus on trash collection, compaction and storage. This paper also discusses the trash compactor design currently being developed for the Space Station Freedom program.  相似文献   

16.
Remediation of halogenated organic compounds—such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs)—poses a challenge because these compounds are resistant to microbial attack and to degradation by many common chemicals. Since the mid-1980s, the Environmental Protection Agency's (EPA's) Office of Research and Development in Cincinnati, Ohio—the National Risk Management Research Laboratory (NRMRL)—has funded research and development efforts to develop specialized, chemical dehalogenation processes for detoxifying PCBs and related compounds. NRMRL owns domestic rights for “basic process” patents on a chemical dehalogenation process commonly known as Base Catalyzed Decomposition (BCD). EPA has licensed the process to two firms for use in the United States. This article summarizes laboratory-scale, pilot-scale, and field performance data on BCD technology collected to date by various governmental, academic, and private organizations.  相似文献   

17.
Many Superfund or hazardous waste sites prove to be excellent candidates for remediation using transportable incineration. Transportable incineration has been selected as the alternative of choice to remediate numerous sites throughout the United States. There are a number of firms that provide mobile and transportable incineration equipment and services. A variety of treatment systems are available, including rotary kilns, fluidized beds, and infrared incinerators. Roy F. Weston, Inc., has been instrumental in the development, design, permitting, construction, performance testing, and operation of hazardous and toxic waste thermal treatment systems. Weston owns and operates two high-temperature transportable incineration systems (TISs). The first system is Weston's seven-ton-per-hour (tph) TIS-5. The second is the TIS-20, with a design capacity of up to 30 tph. These units are typical rotary kiln incinerators, the most flexible, adaptable type of incineration unit. This article discusses Weston's use of these incinerators to remediate soils at sites contaminated with polychlorinated biphenyls (PCBs).  相似文献   

18.
Heat generated by the biodegradation of waste and other chemical processes in a landfill can potentially affect the long-term performance of landfill liner system, in particular that of a high-density polyethylene geomembrane. In a double liner system, the difference in leachate exposure and temperature might improve the long-term performance of the secondary geomembrane compared to that of the primary geomembrane. However, in some cases, the temperature is likely to be high enough to substantially reduce the service-life of the secondary geomembrane. This study explores the possible effectiveness of using tire chips as thermal insulation between primary and secondary liners to reduce the temperature of secondary geomembranes as compared to traditional soil materials. Heat and contaminant migration analyses are performed for cases with no insulation and for cases in which a layer of soil or tire chips has been used as thermal insulation between the primary and secondary liners. The effect of insulation on prolonging the service-life of a secondary geomembrane and, consequently, on contaminant transport through a liner system is examined for the case of a volatile organic compound (dichloromethane) found in landfill leachate. The study suggests that the use of tire chips warrants consideration, however there are other practical issues that require consideration in the detailed design and construction of landfill liners. Issues such as finite service-life, low working temperature, excessive settlement, ability to generate internal heat, leaching of tire chips and limitations in performing electrical resistivity leak detection tests are identified.  相似文献   

19.
Contaminant transport through the clay liner and the underIying secondary leachate drain layer (SLDL) in landfills was studied through a laboratory test, and analysis method on the transport of K+ in a two-layer soil system. The soils used for this study were Ariake clay and the underlying layer, Shirasu soil from the Kyushu region of Japan, representing the clay liner material and SLDL material, respectively. The effective diffusion coefficients (De) of the selected target chemical species, potassium (K+) for the Ariake clay and Shirasu soil were back-calculated using a computer program, and it was found that values of De derived from this study were consistent with those previously published. The hypothesis that the mechanical dispersion process can be negligible has been proved to be reasonable based on both the observation that the predicted values fit the experimental data and the analyses of two dimensionless parameters. Parametric analysis showed the transport of K+ through the soils is controlled by advection-diffusion rather than diffusion only, whereas at low Darcy velocity (i.e. < or = 10(-9) m s(-1)), transport of K+ would be controlled by diffusion. The test results and parametric analysis may be applied in design of landfill liners and SLDLs, particularly in coastal areas.  相似文献   

20.
When combined in the lining and covering of waste-containment facilities, soil and geosynthetic components protect the environment by acting as a hydraulic barrier. Equipment loading may significantly increase the tensile stress induced in geosynthetic components, leading to a potential stability problem. Large equipment loadings may also result in a localized circular slip surface during construction operations. New analytical method based on discrete element modelling is proposed for estimating the distribution of tensile force developed in the individual geosynthetic components of the lining system and for evaluating the safety factor of slope failure due to equipment loading. The analytical results of an example are presented to demonstrate the applicability of the analytical method for the lining system of a waste landfill. The analyses of the example show that equipment loading provide a substantial increase in the tensile forces of the geosynthetic components of a lining system and that the possibility of shallow failure due to equipment loading increases as the slope becomes steeper. This method is a useful tool for analysing the lining system of waste landfills with complex lining components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号