首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports seasonal and spatial variations in the ambient air concentration of nitrogen dioxide throughout the State of Bahrain, from February to December 1992. Monitoring sites were chosen to include urban areas with high traffic density, suburban areas with low traffic density, commercial and industrial areas. Correlations between meteorological parameters and mean NO2 concentrations were analysed, and NO2 levels were only significantly correlated with temperature (r = 0.63). Only February, a winter month, showed a significantly lower concentration of NO2 with an overall mean value of 23 μgm−3, whereas in August, a summer month, it was 33 μgm−3. The results revealed that in a hot region like Bahrain, NO2 concentrations do not show significant monthly variations. Also summer-averaged NO2 values exceeded corresponding spring and winter values. In cold regions opposite patterns were observed. Moreover, the results revealed significant spatial variations in NO2 concentrations. In suburban areas with low traffic density, the overall mean NO2 level was 15, with a range of 12–17 μg m−3, while in urban areas with high traffic density, the overall mean value was 52 with a range of 44–60 μg m−3. The mean NO2 value in industrial sites with low traffic density was 21 with a range of 14–27 μg m−3, whereas in the same areas near major roads, it was 32 with a range of 31–32 μg m−3. These results indicate that automobiles exhaust are the dominant source of NO2 in Bahrain. The highest NO2 levels were found in roads with high traffic density, which are narrow, with several traffic lights and roundabouts, suggesting the effect of road geometry on NO2 levels.  相似文献   

2.
The rate constants for the gas-phase reactions of sabinene and camphene, two monoterpenes emitted from vegetation, with OH and NO3 radicals and O3 have been determined at 296±2 K and one atmosphere total pressure of air. The OH and NO3 radical reaction rate constants were determined using relative rate techniques. Using rate constants of k(OH + isoprene) = 1.01 × 10−10 cm3 molecule−1 s−1, k(NO3 + trans-2-butene) = 3.87 × 10−13 cm3 molecule−1 s−1 and k(NO3 + 2-methyl-2-butene) = 9.33 × 10−12 cm3 molecule−1 s−1, the following OH and NO3 radical reaction rate constants (in cm3 molecule−1 s−1 were obtained: OH radical reaction; sabinene, 1.17 × 10−10 and camphene, 5.33 × 10−11; NO3 radical reaction; sabinene, 1.01 × 10−11, and camphene, 6.54 × 10−13. The absolute O3 reaction rate constants determined were (in cm3 molecule−1 s−1 units): sabinene, 8.07 × 10−17, and camphene, 9.0 × 10−19. These rate constants are compared to literature data for other structural-related alkenes and monoterpenes.  相似文献   

3.
This study reports the diurnal patterns in the concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and total suspended particulate matter (TSP) in the urban atmosphere of Varanasi city in India during 1989. The city was divided into five zones and three monitoring stations were selected in each zone.Ambient concentrations of NO2 and SO2 were maximum during winter but ozone and TSP concentrations were highest during summer. The measured maximum concentrations (2-h average) were 150 and 231 μg m−3 (0.078 and 0.086 ppm) for NO2 and SO2, respectively, for the winter season. Ozone and TSP concentrations reached a maximum of 160 (0.08 ppm) and 733 μg m−3, respectively, in the summer. NO2 and SO2 concentrations peaked in the morning and evening. Peak concentrations of O3 occurred in the afternoon, generally between noon and 4 p.m. Maximum concentrations of O3, NO2, SO2 and TSP were measured in zones I and II, and minimum in zone V.  相似文献   

4.
Scavenging of sulfates and nitrates—two most common ions leading the cloudwater acidity—was investigated during field studies atop a site in Mt. Mitchell (35°44′05″N, 82°17′15″W) State Park where the highest peak (2038 m MSL) of the eastern U.S. is located. Experiments were conducted during the growing seasons (15 May–30 September) of 1986 and 1987 using an instrumented meteorological tower (16.5 m tall) and a passive cloudwater collector. A cloud episode that occurred on 12 October 1987, was also comprehensively investigated. Clouds were frequently observed in which the Fraser fir and red spruce stands stayed immersed 28% and 41% of the time during the 1986 and 1987 seasons, respectively. Rate of cloudwater deposition on the forest canopy was determined using an inferential cloud deposition model. It was found by analysing nine short duration (lasting 8 h or less) and 16 long duration cloud events that the ionic concentration (SO42− and NO3) is inversely proportional to the rate (Ic) of cloudwater deposition (in mm h−1) and can be expressed by the following relationship: [SO42−] = aIcb or [NO3] = aIcb. Theoretical arguments leading to these relationships are presented. The b values for predicting NO32− concentration are found in the range of 0.14–1.24 (mean = 0.48) for short duration and 0.062–0.63 (mean = 0.27) for long duration cloud events, respectively. The corresponding b values for predicting NO3 concentrations are 0.19–1.16 (mean = 0.49) and 0.072–0.59 (mean = 0.27), respectively. When the b parameter was between 0.2 and 0.6, the correlation coefficients between measured and predicted ionic concentrations were found to exceed 0.7. The parameter a is shown to represent the maximum ionic flux for a given cloud event. The ratio of the a parameter for SO42− to NO3 varied between 1.75 and 6.95, indicating that the SO42− contributes to the total ionic concentration substantially more than the NO3 leading to the conclusion that the cloudwater acidity is primarily due to the presence of sulfuric acid which has been demonstrated to cause foliar injury and growth retardation in red spruce trees. The above parameterization is similar to the one that is frequently used to relate ionic concentration in precipitation to the rainfall rate. In order to understand physico-chemical processes leading to the proposed parameterization schemes, meteorological and chemical variables are comprehensively analysed for one short duration and two long duration cloud events. The concentrations of principal ions (SO42−, NO3, H+ and NH4+) during the short duration cloud events were found to be much higher than those during the long duration ones, especially at colder temperatures. Such short cloud events have a potential of causing foliar narcosis in red spruce stands because of unusually acidic cloudwater to which these stands stay exposed intermittently during each growing season.  相似文献   

5.
Rainwater and atmospheric bulk deposition samples were collected at a station on the rooftop of the Research Institute of King Fahd University of Petroleum and Minerals in Dhahran. Continuous sampling was carried out manually throughout the rainy season between December 1987 and February 1988, and for one rainfall event in March 1987. A total number of 13 samples were collected and investigated for pH and dissolved ionic composition using inductivity coupled plasma emission spectrometry (ICP) and ion chromatography (IC). The range and volume-weighted average pH were 5.1–7.2 and 5.48, respectively. Significant negative linear correlations were observed between the precipitation pH and rain depth, and between pH and the summation of dissolved {(Ca2+ + Mg2+)−(SO42− + NO3 + NO2)} (in μeqℓ−1). The ionic summation also correlated negatively with rain depth. The ionic abundance in rainwater (in μeqℓ−1) expressed in concentration order showed the general trend SO42− > HCO3−1 = Cl = NO3 > NO2 for anions and Ca2+ > Na+ > Mg2+ > NH4+ > K+ > H+ > Sr2+ for cations. Good mass balance between cations and anions was observed. Total NO3 contribute equally to precipitation acidity as SO42− and Ca2+ plus Mg2+ in alkaline suspended particulates from natural sources are the major ions which buffer the acidity of precipitation. The NH4+ ion which is also present plays an insignificant role in the acid/base equilibrium of rainwater.  相似文献   

6.
A statistical model is developed for the large-sample-averaged raindrop size spectrum. Under the condition that the “instant” spectrum can be fitted with a gamma distribution, n(D) = N0DμeλD, it is proven that the averaged spectrum approaches the Marshall-Palmer distribution, n(D) = N0eλD, with the sample number increasing.  相似文献   

7.
Precipitation chemistry data for the years 1982–1985 from 110 stations distributed across the continental U.S. and southern Ontario Province are used to describe the geographic distributions of SO42− and NO3 in precipitation. Volume-weighted, wet SO42− and NO3 concentrations, averaged over the 4 years of observation by season and annullly, show coherent patterns with maxima in the northeastern U.S. and southeastern Canada about ten times greater than the minima observed in the Intermountain and Pacific Northwest regions.Tests for empirical source-receptor relationships indicate that, in land areas with relatively low emissions of SO2 and NOx, the associations between wet SO42− concentrations and SO2 emissions and between wet NO3 concentrations and NOx emissions within 560 km of each precipitation chemistry station are weak or nonexistent (r2⩽0.42). The remaining land areas show moderate to strong associations between SO2 and SO42− and NOx and NO3 during the spring and summer, but only weak to nonexistent associations during the winter. The associations between emissions and concentrations, e.g. SO2 and SO42−, are equally well represented by either a linear or a power law function. However, at the level of aggregation employed, the data do not substantiate a linear-proportional relationship between concentrations and anthropogenic emissions. Furthermore, emissions of SO2 and NOx are highly correlated, as are the emissions of RHC and NOx.  相似文献   

8.
Assessment of the effect of reduction in emissions of primary sources on eventual levels of pollutants, pH of precipitation and total wet deposition is crucial in designing acid-rain control strategies. The STEM-II/ASM model is used to investigate the effect of reduction in emissions on the ultimate deposition patterns and amounts of major acidic pollutants in a mesoscale region. This work also investigates the effect of background levels of primary pollutant species on the eventual levels and deposition amounts of SO4= and NO3. A series of mesoscale simulations were conducted in which emissions of primary sources of NOx and SO2 were reduced and/or background concentrations of certain key species were changed. The results indicate that the dominant effect on the eventual deposition amounts of SO4= and NO3 is due to background concentrations of key precursor species such as SOx and NOx. With relatively high background concentrations, reducing SO2 emissions by 50% and NOx emissions by 40% resulted in reductions of 2–3% for SO4= wet deposition aand about 15% for NO3 wet deposition. However, reducing the background concentrations of SO2 and SO4= by 50% and NO, NO2 and HNO3 by 40% resulted in substantial reductions in wet deposition; SO4= deposition was reduced by 40–50% and NO3 deposition was reduced by approximately 35%.  相似文献   

9.
Atmospheric dry deposition to branches of Pinus contorta and P. albicaulis was measured during summer 1987 in a sub-alpine zone at Eastern Brook Lake Watershed (EBLW), eastern Sierra Nevada, California. Results are presented as deposition fluxes of NO3, SO42−, PO43−, Cl, F, NH4+, Ca2+, Mg2+, Na+, K+, Zn2+, Fe3+, Mn2+, Pb2+ and H+, and compared with other locations in California and elsewhere. Deposition fluxes of anions and cations to the pine branches were low, several times lower than the values determined near the Emerald Lake Watershed (ELW), another sub-alpine location in the western Sierra Nevada. The sums of deposition fluxes of the measured cations and anions to pine surfaces were similar, in contrast to the ELW location where the sums of cation fluxes were much higher than the sums of anion fluxes. A strong positive correlation between depositions of NO3 and NH4+, as well as SO42− and Ca2+, suggested that large portions of these ions might have originated from particulate NH4NO3 and CaSO4 deposited on pine surfaces. An estimated total N dry deposition (surface deposition of NO3 and NH4+ and internal uptake of NO2 and HNO3) to the forested area of the EBLW was 29.54 eq ha−1 yr (about 414 g H ha−1 yr−1).  相似文献   

10.
Personal and indoor exposure to nitrogen dioxide (NO2 were studied in a population of housewives and children. Personal exposure, indoor concentrations and peak exposures were measured using Palmes' diffusion tubes during three measurement periods of 1 week within 1 year. Very high peak concentrations were found in the kitchens (up to 2000 μg m−3).Three different estimates of personal exposure were constructed using indoor concentrations and time budget data. All three were found to be closely associated with measured personal exposure.The variability over time of personal and indoor concentrations, and of the three exposure estimates was investigated in a one-way analysis of variance. The within-location or within-subject variances of indoor concentrations and estimated personal exposures were found to be smaller, relative to the between-location or between-subject variances, than the within-subject variance of measured personal concentrations. The close association between measured indoor concentrations (or exposure estimates based on indoor concentrations) and measured personal exposure suggests that measuring indoor concentrations of nitrogen dioxide in the home is sufficient to estimate personal exposure accurately.Short term peak concentrations were found to be only weakly associated with indoor NO2 sources and weekly average indoor NO2 concentrations. Repeated exposure to short term peak concentrations has been suggested that diffusion type measurements of personal and indoor exposure to NO2, which are widely used suggests that diffusion type measurements of personal and indoor exposure to NO2, which are widely used in epidemiologic studies, may not adequately reflect the most biologically relevant exposure.  相似文献   

11.
基于腔衰减相移光谱法设计了一套二氧化氮在线分析仪,通过优化测量参数,该仪器可长期稳定运行,其时间分辨率为60 s,检出限为0.191 ppb,在0~300 ppb范围内,NO2气体浓度与相位正切信号值具有较好的二次拟合关系,R2为0.9995.另外,该仪器在泰安站进行了长期外场观测,并与改装后的进口商品化仪器PKU-Thermo 42i-TL进行比对实验,结果表明,两者的测量结果一致性较好,R2=0.9811,表明其具有良好的运行稳定性和测定结果准确性,适用于环境大气二氧化氮浓度的在线监测.外场观测结果表明,春季泰安站二氧化氮浓度均值为12.39 ppb,有明显日变化规律.  相似文献   

12.
Aerosol light absorption (babs) has been measured in real-time in Los Angeles with a validated photoacoustic technique, and its impact on visibility degradation has been examined. These measurements were collected during ten days in the summer of 1987 for the Southern California Air Quality Study (SCAQS). Aerosol babs (λ = 514.5 nm) varied from an hourly average value of 7 × 10−6 m−1 in the 3–4 and 4–5 a.m. periods of 13 July to 9 × 10−5 m−1 in the 7–8 a.m. period of both 28 August and 3 September. This babs, which is due solely to elemental carbon (EC) showed a distinct diurnal pattern with low values at night, increasing around sunrise to higher values through mid-afternoon. Comparison of these data with aerosol light scattering data clearly illustrates that the contribution of aerosol light absorption to visibility degradation increases in importance under less polluted conditions. Other urban and rural studies show similar results.  相似文献   

13.
Fluxes of NO and N2O from sandy loam soils cropped with winter wheat and a clay loam soil under ryegrass, with and without the addition of NH4NO3 fertilizer, were measured using static and dynamic chamber methods. Nitric oxide fluxes ranged from −0.3 (deposition) to 6.9 (emission) ng NO-N m−2 s−1. The corresponding N2O flux ranged from 0 to 91 (emission) ng N2O-N m−2 s−1. The NO flux was temperature dependent. Activation energies ranged from 40 to 81 kJ mol−1. Nitric oxide and N2O fluxes increased linearly with soil available nitrogen (NH4 + NO3). Emissions of NO and N2O were not detectable from unfertilized ryegrass plots. Instead, nitric oxide was absorbed by the soil and vegetation at a maximum rate of 0.31 ng NO-N m−2 s−1. The aeration state of the soil controlled the relative rates of NO and N2O emission. Nitric oxide was the major gas emitted from well aerated soils, conditions that favour nitrification. The NO/N2O emission ratio was >100 for the coarse-textured sandy loam soil and the clay loam soil only during low rainfall periods. Nitrous oxide was the major gas emitted from less aerated soils, conditions that allowed denitrification to occur. The NO/N2O emission ratio was <0.001 for the clay loam soil when rainfall was high and soils were wet. Extrapolation to the U.K. situation showed that agricultural land may account for 2–6% of the total annual NOx emission and for 16–64% of the total annual N2O emission in the U.K.  相似文献   

14.
Heterogeneous reactions of NO2 and HNO3 at sub-ppm levels with individual sea-salt and mineral particles were investigated. Particles deposited on filters and on electron microscope grids placed in a Teflon reaction chamber, were exposed to NO2 or HNO3 under controlled conditions. Experiments were carried out under dark conditions and were repeated under u.v. radiation (solar simulation). Nitrates formed on the particles were determined by bulk and individual particle analyses. Individual sea-salt and mineral particles were observed in a transmission electron microscope for the presence of nitrate on the particle surface.The formation of nitrates on sea-salt particles under dark conditions, was in the range of 0.1–3.3 mg NO3 g−1 NaCl. Higher values were obtained for mineral particles: 0.2–8.2 mg NO3 g−1 aerosol ([NO2] =0.18 and 0.54 ppm; [HNO3] = 0.04 ppm; exposure time 1–7 days; relative humidity = 70%). The formation of nitrates on sea-salt particles increased from 3.0 to 16.1 mg NO3 g NaCl when u.v. radiation was added. Mineral particles did not show a significant increase in nitrate formation under u.v. radiation.Microscopy showed that about 50% of the soil particles reacted with NO2 and HNO3 to form mixed nitrate particles. Almost all sea-salt particles (above 95%) reacted with both gases, although the reaction was not complete and took place only on the particle surface.Application of electron microscopy and a specific microspot technique provided direct evidence for the formation of nitrate on sea-salt and mineral particles exposed to NO2 and HNO3.  相似文献   

15.
赵倩  陈超  封莉  张立秋 《环境科学》2013,34(7):2665-2669
在300 W氙灯光照条件下,研究了消炎镇痛类药物安替比林(ANT)在纯水中的光降解效能与机制,重点考察了水中不同形态无机氮及pE值对ANT光降解效能的影响.结果表明,ANT在不同条件下的光降解均符合假一级反应动力学;ANT在纯水中的光降解包括直接光解以及由羟基自由基(.OH)和单线态氧(1O2)参与的自敏化光解,贡献率分别为55.27%、22.19%和22.54%.不同形态无机氮(NH4+、NO2-和NO3-)单独存在条件下对ANT光降解效能的影响差异较大.在pE值较低时,即无机氮主要以NH4+形式存在,对ANT的光降解几乎没有影响;随着pE值的升高(由4.82~6.85),NH4+向NO2-转化,由于NO2-不仅能与ANT竞争吸收光子,同时还对.OH具有较强的淬灭作用,使得其对ANT光降解的抑制作用逐渐增强,当pE值达到6.85,即无机氮主要以NO2-形式存在时,ANT光降解的抑制率达到最高为35.31%;随着pE值的继续升高(由6.85~8.15),NO2-向NO3-转化,对ANT光降解的抑制作用逐渐减弱.  相似文献   

16.
Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the llth Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO42-) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NOx) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NOx emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NOx emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3-), 1-hr maxima ozone (03) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%--4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3-, 1-hr maxima 03 concentrations and total nitrogen deposition by 2%-4%, 1%-%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.  相似文献   

17.
The uptake of NO, NO2 and O3 by sunflowers (Helianthus annuus L. var. giganteus) and tobacco plants (Nicotiana tabacum L. var. Bel W3), using concentrations representative for moderately polluted air, has been determined by gas exchange experiments. Conductivities for these trace gases were measured at different light fluxes ranging from 820 μEm−2s−1 to darkness. The conductivities to water vapor and the trace gases are highly correlated. It is concluded that the uptake of NO, NO2 and O3 by sunflowers and tobacco plants is linearly dependent on stomatal opening. While the uptake of NO is limited by the mesophyll resistance, the uptake of NO2 is only by diffusion through the stomata. Loss processes by deposition to the leaf surfaces are more pronounced for O3 than for NO and NO2.  相似文献   

18.
张柏发  陈丁江 《环境科学》2014,35(8):2911-2919
以浙江某典型流域为研究对象,基于1980~2010年的水质水量和氮源数据及LOADEST模型,估算了逐年河流NO-3-N通量和净人类活动氮输入(NANI),分析了河流NO-3-N通量和NANI的年际演化特征及其动态响应关系,探讨了每年NANI、滞留氮库、自然背景源对河流NO-3-N通量的贡献.结果表明,1980~2010年,河流NO-3-N通量和NANI总体上都呈现出先增后减的抛物线型变化趋势,均在1998年左右分别达到峰值5.74 kg·(hm2·a)-1和77.5 kg·(hm2·a)-1;过去31 a,河流NO-3-N通量和NANI分别净增加了~42%和~77%.化肥氮和大气氮沉降是NANI的主要来源,分别占了NANI的~48%和~40%.河流NO-3-N通量的年际变化不仅与NAIN(R2=0.27**)和化肥氮输入量(R2=0.32**)显著相关,而且与河流年均流量(R2=0.79**)或降雨量(R2=0.63**)具有更强的相关性,意味着河流NO-3-N的来源除了当年的NAIN,还受滞留氮库的影响.所建立的以NANI和流量为自变量的回归模型能很好地模拟河流NO-3-N通量变化(R2=0.94**).该模型预测结果显示,在NANI和流量分别降低30%的情况下,河流年均NO-3-N通量将分别减少~21%和~30%;每年的NANI、滞留氮库、自然背景源对河流当年NO-3-N通量的贡献率分别为~53%、~24%、~23%.河流NO-3-N通量长期的年际变化是NANI和水文要素共同作用的结果;但是,由于滞留氮库的影响,与源控制方式相比,增加"汇"景观应该能更加快速地削减河流NO-3-N通量.  相似文献   

19.
Concomitant atrazine degradation and nitrate reduction by a pure culture of Pseudomonas sp. strain ADP were studied. Under anoxic conditions, Ps ADP grew well and degraded atrazine efficiently in the presence of nitrate. Similar atrazine degradation rates were observed under both anoxic and aerobic conditions: 30.7±2.83 and 36.2±0.44 mg atrazine g−1 cell h−1, respectively. A high denitrification rate of 90.8±8.22 mg NO3-N g−1 cell h−1 was also observed using Ps ADP with citrate as the electron donor. The required citrate to nitrate ratio for complete denitrification was 5.11±0.15 g citrate g−1 NO3-N.  相似文献   

20.
Simultaneous aerosol and snow sampling was performed during a field campaign at the Alpine site Weissfluhjoch Davos, Switzerland (2540 m a.s.1.) from 1 January through 30 March 1988. In addition, a snow pit was sampled on 30 March 1988. Very good agreement between the new snow and pit snow samples was found for the measured major ions as well as for the stable isotopes δ18O and δD. Thus, snow pit samples obtained at this site during the winter months yield representative deposition patterns with a conserved stratigraphy. Generally, concentrations in snow were very low, with 3.5, 8.5, 5.2 and 2.4 μeq ℓ−1 for Cl, NO3, SO42−, respectively. The 36Cl and 10Be concentrations as well as the 10Be/36Cl ratios were comparable to the ones measured at Arctic sites. With the exception of NO3, no linear relation was obtained between atmospheric and snow concentrations, showing that the concept of scavenging ratios must be used with caution when looking at single snowfall events. The following precipitation-weighted mean scavenging ratios were found: 300 for NH4+, 350 for SO42−, 940 for total NO3(NO3+HNO3), 175 for 210Pb, and 750 for 10Be.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号