首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The grey short-tailed opossum, Monodelphis domestica, has been an established research animal for more than five decades, but relatively, little is known about its thermophysiology. Here we studied core body temperature (T b) and metabolic rate (MR) of female adult M. domestica housed in the laboratory at an ambient temperature (T a) of 26 °C. In expanding previous reports, the average recorded core T b of M. domestica was 34.3 °C. The T b of an individual M. domestica can drop below 30 °C (minimal T b: 28.6 °C) accompanied by a reduction in MR of up to 52 % even while having ad libitum access to food. These findings demonstrate for the first time the presence of spontaneous torpor in M. domestica. Metabolic suppression at relatively high T a and T b furthermore broadens our perspective on the use of torpor as a metabolic strategy not just restricted to cold climates.  相似文献   

2.
Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures (T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record T as at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed (Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats (Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum T a was ~45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when T a exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures (T skin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0 to 45.8 °C in Mormopterus, and these are the highest T skin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme T skin range known for mammals (3.3 to 45.8 °C) and delay regulation of T skin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.  相似文献   

3.
Particles from ambient air and combustion sources including vehicle emission, coal combustion and biomass burning were collected and chemically pretreated with the purpose of obtaining isolated BC (black carbon) samples. TEM (transmission electron microscopy) results indicate that BC from combustion sources shows various patterns, and airborne BC appears spherical and about 50 nm in diameter with a homogeneous surface and turbostratic structure. The BET (Barrett–Emmett–Teller) results suggest that the surface areas of these BC particles fall in the range of 3–23 m2/g, with a total pore volume of 0.03–0.05 cm3/g and a mean pore diameter of 7–53 nm. The nitrogen adsorption–desorption isotherms are indicative of the accumulation mode and uniform pore size. O2-TPO (temperature programmed oxidation) profiles suggest that the airborne BC oxidation could be classified as the oxidation of amorphous carbon, which falls in the range of 406–490°C with peaks at 418, 423 and 475°C, respectively. Generally, the BC characteristics and source analysis suggest that airborne BC most likely comes from diesel vehicle emission at this site.  相似文献   

4.
In this study, the effects of a diesel oxidation catalyst (DOC) coupled with a catalyzed diesel particulate filter (CDPF) with different catalyst loadings on the power, fuel consumption, gaseous and particulate emissions from a non-road diesel engine were investigated. Results showed that the after-treatment had a negligible effect on the power and fuel consumption. The reduction effect of the DOC on the CO and hydrocarbon (HC) increased with the engine load. Further reductions occurred coupling with the CDPF. Increasing the catalyst loading resulted in a more significant reduction in the HC emissions than CO emissions. The DOC could increase the NO2 proportion to 37.9%, and more NO2 was produced when coupled with the CDPF below 250°C; above 250°C, more NO2 was consumed. The after-treatment could reduce more than 99% of the particle number (PN) and 98% of the particle mass (PM). Further reductions in the PN and PM occurred with a higher CDPF catalyst loading. The DOC had a better reduction effect on the nucleation particles than the accumulation ones, but the trend reversed with the CDPF. The DOC shifted the particle size distribution (PSD) to larger particles with an accumulation particle proportion increasing from 13% to 20%, and the geometric mean diameter (GMD) increased from 18.2 to 26.0 nm. The trend reversed with the CDPF and the accumulation particle proportion declined to less than 10%. A lower catalyst loading on the CDPF led to a higher proportion of nucleation particles and a smaller GMD.  相似文献   

5.
Rice (Oryza sativa L.) paddies are one of the major sources of atmospheric methane (CH4), a greenhouse gas. To elucidate the quantitative relationship between CH4 emission from rice paddies and temperature, 6 years data of CH4 emission from pot experiments were analyzed in terms of the sum of effective temperature (∑(T−15); T is the daily mean air temperature (°C)). The base temperature of 15 °C was adopted as the 0 °C physiological temperature for methanogens. Significant positive correlations between total CH4 emission throughout the rice growth period and ∑(T−15) were observed for pots with rice straw (RS) application at a rate of 6 g kg−1 soil, which corresponds to 6 t ha−1 (r=0.83071), and those without RS application (r=0.81871). It was confirmed that temperature is a major factor affecting the interannual variation in CH4 emission. For the 1993 and 1995 data sets that include seven and four levels of RS application, the relationship between seasonal CH4 emission and RS application rate could be expressed using linear functions (r=0.98871, 0.99671), the slopes of which were similar to each other. Based on these findings, we confirmed that the dependence of seasonal CH4 emission on both temperature and RS application rate can be described by a single linear equation.  相似文献   

6.
We incubated eggs of the Japanese gecko Gekko japonicus at three temperatures, and measured yolk testosterone (T) and 17??-estradiol (E2) levels at three time points in embryonic development (oviposition, 1/3 of incubation, and 2/3 of incubation), to examine whether maternal influence on offspring sex via yolk steroid hormone deposition is significant in the species. Eggs incubated at 24?°C and 32?°C produced mostly females, and eggs incubated at 28?°C almost a 50:50 sex ratio of hatchlings. Female-producing eggs were larger than male-producing eggs. Clutches in which eggs were incubated at the same temperature produced mostly same-sex siblings. Yolk T level at laying was negatively related to eggs mass, and yolk E2/T ratio was positively related to egg mass. Results of two-way ANOVA with incubation temperature and stage as the factors show that: yolk E2 level was higher at 32?°C than at 24?°C; yolk T level was higher, whereas yolk E2/T ratio was smaller, at 28?°C than at 24?°C; yolk E2 and T levels were higher at 2/3 than at 1/3 of incubation. Our data in G. japonucus show that: (1) maternal influence on offspring sex via yolk steroid hormone deposition is significant; (2) incubation temperature affects the dynamics of developmental changes in yolk steroid hormones; (3) influences of yolk steroid hormones on offspring sex are secondary relative to incubation temperature effects; and (4) offspring sex correlates with an interaction between incubation temperature and yolk steroid hormones.  相似文献   

7.
This paper deals with design and performance of energy efficient biomass cookstove suitable for different fuel wood & briquetted fuel. It was tested with babul wood (Prosopis julliflora), goundnut (Arachis hypogaea) shell briquettes, sawdust briquettes and Cashew nut (Anacardium occidentale) shell. The stove was insulated by refractory cement (Insulyte -11U) to minimize heat losses. The stove has exhibited about 35% thermal efficiency. The CO and CO2 emission was in the range of 3–6 ppm and 17–25 ppm respectively. The stove works in the range of 1.53 to 1.76 kW of power rating. The maximum flame temperature was recorded as 763°C when Cashew nut (Anacardium occidentale) shell was used as feed stock.  相似文献   

8.
In order to investigate the contribution of various black carbon (BC) contents to nonlinearity of sorption and desorption isotherms for acetochlor on sediment, equilibrium sorption and desorption isotherms were determined to measure sorption and desorption of acetochlor in sediment amended with various amounts of BC. In this paper, two types of BC referred to as BC400 and BC500 were prepared at 400°C and 500°C, respectively. Higher preparation temperature facilitated the formation of micropores on BC to enhance its sorption capacity. Increase of the BC content obviously increased the sorption amount and reduced the desorption amount for acetochlor. When the BC500 contents in total organic carbon (TOC) increased from 0 to 60%, Freundlich sorption coefficient (K f) increased from 4.07 to 35.74, and desorption hysteresis became gradually obvious.When the content of BC in TOC was lower than 23%, the sorption isotherm had a significant linear correlation (p = 50.05). In case of desorption, a significant nonlinear change could be observed when the content of BC was up to 13%. Increase of BC content in the sediment would result in shifting the sorption-desorption isotherms from linearity to nonlinearity, which indicated that contribution of BC to nonlinear adsorption fraction became gradually remarkable.  相似文献   

9.
Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats (Nyctophilus geoffroyi, 7.8?g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20?min after sunset, ended activity about 2.5?h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures (T a) were as high as 23°C. On average, bats remained torpid for almost 5?h, mean minimum skin temperature (T skin) measured was 22.8?±?0.1°C and daily T skin minima were correlated with T a. Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.  相似文献   

10.
S(IV) dissolved in droplets is partially evolved as SO2 during freezing. A spray of droplets with average diameter 39μm, produced by an ultrasonic transducer, was let to fall through a controlled atmosphere with known SO2 concentration, at varying temperatures between −8 and −23°C, attaining thermal and chemical equilibrium. In a first arrangement, the droplets fell by gravitation on an ice surface. Two other arrangements simulated the riming ventilation conditions: in one series of experiments, the droplets were projected by a gas jet at several m s−1 against a target; in another, the droplets were caught by rotating rods. The fraction of S(IV) retained in the ice Γ was determined by analysis of the samples and comparison with the equilibrium concentration in the liquid droplets. Samples collected by gravitation showed a retention coefficient Γ = 0.25 + 0.012 Ts (Ts = supercooling); rime samples showed large dispersion in the results, the retention coefficient being best represented by an average value Γ = 0.62, independent of temperature.  相似文献   

11.
Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum (Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2?±?1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.  相似文献   

12.
Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.  相似文献   

13.
Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide (TPAOH) solution with different concentration. The hierarchical pore structure formed during the desilication process facilitates the dispersion of Pt nanoparticles and Pt/ZSM-5 catalysts exhibit rather high catalytic activity for the deep oxidation of various VOCs at low temperature. The catalyst treated with TPAOH of 0.1 mol/L (Pt/ZSM-5(0.1)) shows the lowest degradation temperature (T90%) of 128 and 142°C, respectively for benzene and n-hexane. Compared with the untreated Pt/ZSM-5 catalyst, the abundant mesopores, small Pt particle size and finely dispersed Pt contribute to the superior catalytic activity and stability of the Pt/ZSM-5 catalysts for VOCs removal. More importantly, the existence of H2O in the feed gases hardly affected the activity of Pt/ZSM-5(0.1) catalyst at the low reaction temperature of 128°C, which is very important for VOCs low-temperature removal in the future practical applications.  相似文献   

14.
Black carbon (BC) in ten contaminated sediments from the Song-Liao watershed, NE China, was isolated upon treatments using a combustion method at 375°C, and the isolates’ sorption isotherms for phenanthrene (Phen) were determined. All sorption isotherms were nonlinear and fitted well by the Freundlich model. A negative relation was found between Freundlich sorption nonlinearity parameter (n values) and BC/total organic carbon (TOC) content of the original sediments (r 2 = 0.687, p<0.01), indicating the dominance of BC in Phen sorption nonlinearity. The BC isolates from this industrialized region had n values of 0.342 to 0.505 and logK FOC values of 6.02 to 6.42 (μg·kg−1·OC−1)/(μg·L−1) n for Phen. At a given C e, the BC had higher K oc value than the original sediments, revealing a higher sorption capacity for BC. BC was responsible for 50.0% to 87.3% of the total sorption at C e= 0.05 S w, clearly indicating the dominance of BC particles in overall sorption of Phen by sediments.  相似文献   

15.
Climate change and energy service demand exert influence on each other through temperature change and greenhouse gas emissions. We have consistently evaluated global residential thermal demand and energy consumption up to the year 2050 under different climate change scenarios. We first constructed energy service demand intensity (energy service demand per household) functions for each of three services (space heating, space cooling, and water heating). The space heating and cooling demand in 2050 in the world as a whole become 2.1–2.3 and 3.8–4.5 times higher than the figures for 2010, whose ranges are originated from different global warming scenarios. Cost-effective residential energy consumption to satisfy service demand until 2050 was analyzed keeping consistency among different socio-economic conditions, ambient temperature, and carbon dioxide (CO2) emission pathways using a global energy assessment model. Building shell improvement and fuel fuel-type transition reduce global final energy consumption for residential thermal heating by 30% in 2050 for a 2 °C target scenario. This study demonstrates that climate change affects residential space heating and cooling demand by regions, and their desirable strategies for cost-effective energy consumption depend on the global perspectives on CO2 emission reduction. Building shell improvement and energy efficiency improvement and fuel fuel-type transition of end-use technologies are considered to be robust measures for residential thermal demand under uncertain future CO2 emission pathways.  相似文献   

16.
The advent of severe acute respiratory syndrome and its potential environmental transmission indicates the need for more information on the survival of coronavirus in water and wastewater. The survival of representative coronaviruses, feline infectious peritonitis virus, and human coronavirus 229E was determined in filtered and unfiltered tap water (4 and 23°C) and wastewater (23°C). This was compared to poliovirus 1 under the same test conditions. Inactivation of coronaviruses in the test water was highly dependent on temperature, level of organic matter, and presence of antagonistic bacteria. The time required for the virus titer to decrease 99.9% (T99.9) shows that in tap water, coronaviruses are inactivated faster in water at 23°C (10 days) than in water at 4°C (>100 days). Coronaviruses die off rapidly in wastewater, with T99.9 values of between 2 and 4 days. Poliovirus survived longer than coronaviruses in all test waters, except the 4°C tap water.  相似文献   

17.
An unavoidable but reusable waste so as to enhance a more circular waste utilization has been spent potlining (SPL) generated by the aluminum industry. The combustion mechanisms, evolved gasses, and ash properties of SPL were characterized dynamically in response to the elevated temperature and heating rates. Differential scanning calorimetric (DSC) results indicated an exothermic reaction behavior probably able to meet the energy needs of various industrial applications. The reaction mechanisms for the SPL combustion were best described using the 1.5-, 3- and 2.5-order reaction models. Fluoride volatilization rate of the flue gas was estimated at 2.24%. The SPL combustion emitted CO2, HNCO, NO, and NO2 but SOx. The joint optimization of remaining mass, derivative thermogravimetry, and derivative DSC was achieved with the optimal temperature and heating rate combination of 783.5°C, and 5 °C/min, respectively. Interaction between temperature and heating rate exerted the strongest and weakest impact on DSC and remaining mass, respectively. The fluorine mainly as the formation of substantial NaF and CaF2 in the residual ash. Besides, the composition and effect of environment of residual solid were evaluated. The ash slagging tendency and its mineral deposition mechanisms were elucidated in terms of turning SPL waste into a benign input to a circular waste utilization.  相似文献   

18.
A filter-polyurethane foam plug high volume air sampler was used to collect the particle (P) and vapor (V) phases of four classes of semivolatile organic compounds (SOC) in Denver, CO: n-alkanes. polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons (PAH), and organochlorine pesticides. The carbon preference index (CPI) of n-alkanes in the V or P phases alone was skewed by temperature-dependent V/P partitioning; a combined gaseous + particulate CPI was preferred. The CPI suggested that the alkanes in Denver air were predominently petrogenic. Total PCB were calculated as the sum of individual congeners and also as Aroclor equivalents, with good agreement between the two methods. Apparent V/P distributions of these compound classes were expressed as A(TSP)/F, were A and F are the adsorbent- and filter-retained SOC concentrations (ng m−3) and TSP is the total suspended particle concentration (μg m−3). Values of A(TSP)/F were related to the average sampling temperature (T, K) through: log [A(TSP)/F] = m/T + b. Fitted log A(TSP)/F at 5°C correlated well with pL0 at 5°C, the SOC liquid vapor pressure. No differences were observed in partitioning behavior among the four SOC types.  相似文献   

19.
The objective of this study was to determine the black carbon concentration in Beijing in 2003. The aerosol properties were measured using an Aethalometer and a tapered element oscillating microbalance (TEOM) on the roof of the Physics Building of Peking University (39.99° N, 116.31° E) from July to August 2003 and from November 2003 to January 2004. The average black carbon (BC) concentrations in the summer and winter were 8.80 and 11.4 μg/m3, respectively. During winter, two different cyclone cut offs were installed at the inlet of an aethalometer. The BC mass concentration in TSP, PM10, and PM2.5 were obtained. The results indicated that in winter aerosol, 90% of BC exited in PM10 and 82.6% of BC exited in PM2.5. The BC in PM10 accounted for 5.11% of the PM10 mass. Translated from Acta Scientiae Circumstantiae, 2005, 25(1): 17–22 [译自: 环境科学学报]  相似文献   

20.
Norovirus causes large outbreaks involving all age groups and are considered the most common cause of infectious foodborne diseases worldwide. The aim of this study was to describe a norovirus outbreak connected to insufficient heat treatment during preparation of a shellfish soup in serving portions, during a company Christmas celebration in Norway, December 2013. A questionnaire sent to the employees, showed that 67 % (n = 43) of the celebration participants, reported gastrointestinal symptoms including stomach pain, vomiting, diarrhoea and light fever in the period between 24 and 48 h post celebration. Several dishes were served, including shellfish soup made with carpet shell clams (Tapes rhomboides) in porcelain cups. Consuming this soup, was the only significant risk factor for infection. Norovirus GI and GII were detected in the remaining raw shellfish. To mimic the time and temperature obtained during bivalve soup preparation, raw chopped shellfish tissue and raw cepa onion were added in porcelain cups tempered to 20 °C. To each of these cups, boiling soup base was added. The temperature in the shellfish tissue was continuously recorded, and showed a maximum of 49 °C in the period between 3 and 7 min after adding the boiling soup base. After 1 h the temperature was 30 °C. This time and temperature combination was obviously not sufficient for inactivation of norovirus present in the shellfish tissue. In conclusion, the heat-absorbing capacity of cold ingredients, utensils and table wear porcelain should not be underestimated during food production. Consumers who want to avoid eating raw shellfish, should not assume that the shellfish tissue in preparation as described in our study is adequately heat treated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号