首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl nitrate, CH3ONO2, was measured by electron capture gas chromatography (EC-GC) under conditions which allowed resolution of methyl nitrate, PAN, and several chlorinated hydrocarbons. Calibrations involved both EC-GC andNOx chemiluminescence and were in agreement with independent calibrations involving i.r. spectroscopy. The rate constant for photolysis of methyl nitrate in sunlight was< 2.3 × 10−6s−1. Detection limits of field instruments were 0.1–0.4 ppb. Some 3000 EC-GC chromatograms grams of ambient air recorded between June and December 1987, during the Southern California Air Quality Study (SCAQS) at up to nine Southern California locations yielded only seven possible, but unlikely observations of methyl nitrate. Thus, methyl nitrate was only a minor component among nitrogenous air pollutants during SCAQS. The measured CH3ONO2/PAN ratios of<0.003–0.2 during SCAQS are discussed in terms of available kinetic data for PAN unimolecular decomposition (a major source of methyl nitrate), PAN thermal decomposition and CH3ONO2 photolysis.  相似文献   

2.
Rice (Oryza sativa L.) paddies are one of the major sources of atmospheric methane (CH4), a greenhouse gas. To elucidate the quantitative relationship between CH4 emission from rice paddies and temperature, 6 years data of CH4 emission from pot experiments were analyzed in terms of the sum of effective temperature (∑(T−15); T is the daily mean air temperature (°C)). The base temperature of 15 °C was adopted as the 0 °C physiological temperature for methanogens. Significant positive correlations between total CH4 emission throughout the rice growth period and ∑(T−15) were observed for pots with rice straw (RS) application at a rate of 6 g kg−1 soil, which corresponds to 6 t ha−1 (r=0.83071), and those without RS application (r=0.81871). It was confirmed that temperature is a major factor affecting the interannual variation in CH4 emission. For the 1993 and 1995 data sets that include seven and four levels of RS application, the relationship between seasonal CH4 emission and RS application rate could be expressed using linear functions (r=0.98871, 0.99671), the slopes of which were similar to each other. Based on these findings, we confirmed that the dependence of seasonal CH4 emission on both temperature and RS application rate can be described by a single linear equation.  相似文献   

3.
The formation of H2O2 in the reactions of ozone with alkenes, isoprene and some terpenes has been studied with tunable diode laser absorption spectroscopy. The measured yields of H2O2 were found to be considerably enhanced in the presence of water vapour. H2O2 is thought to be formed in the ozonolysis of the alkene with O3 by direct reaction of an intermediate with water vapour. The yield of H2O2 relative to the reacted alkene in the ozonolysis of trans-2-butene in the presence of water vapour was also studied with long path FTIR spectroscopy. Irrespective of the analytical methods and reaction conditions applied, the H2O2 yields in the reaction of O3 with the different alkenes in the presence of water vapour were found to be in the range of a few per cent or less. Under the assumption that the reactive species forming H2O2 in the ozonolysis is the Criegee biradical, the overall rate constants for the reactions of some biradicals with water vapour were measured relative to the rate constant of the biradical with SO2. For the H2COO biradical a rate constant of (5.8 ± 2.5) × 10−17 cm3 s−1 was determined and for the (CH3)2COO biradical (2.9 ± 1.5) × 10−17 cm3 s−1; in the latter case with the assumption that (CH3)2COO reacts with SO2 as fast as CH2COO.  相似文献   

4.
北京上甸子站气相色谱法大气CH4和CO在线观测方法研究   总被引:4,自引:2,他引:2  
参照瓦里关全球大气本底站气相色谱在线观测系统的设计,通过系统调试、测试和参数优化,于2009年在北京上甸子区域大气本底站建立了高精度气相色谱法大气CH4和CO在线观测系统.该系统对CH4和CO的测量精度分别优于0.03%和0.45%,达到世界气象组织全球大气观测计划(WMO/GAW)的质量目标.研究建立了与该系统配套的标气选取方法及运行序列:选取可基本涵盖该站大气CH4和CO浓度范围的2瓶标气作为工作标气,其中CH4浓度分别为2 007.1×10-9、1 809.5×10-9(摩尔分数,下同),CO浓度分别为405.6×10-9、123.8×10-9,在高低浓度工作标气之间穿插分析3次大气样品,能够保证测量的准确度(观测浓度的标准偏差CH4<1.7×10-9、CO<1×10-9),同时可最大程度地节省工作标气.该方法已应用于华北地区本底大气CH4和CO的高精度连续观测.  相似文献   

5.
长江口盐沼带湿地生态演替过程中甲烷排放研究   总被引:3,自引:0,他引:3  
甲烷(CH4)作为河口湿地碳循环的重要中间产物,是大气中仅次于二氧化碳(CO2)的第二大温室气体,其排放清单对于全球气候变暖趋势的预测具有重要意义.因此,本研究采用静态箱-气相色谱技术,针对长江口盐沼带湿地CH4的排放通量展开了为期2年、每月1次的现场观测.研究结果表明,长江口盐沼带湿地持续表现为大气CH4的净排放源,其中,2011年在海三棱藨草覆盖情况下,全年CH4平均排放通量达到了1.00 mg·m-2·h-1,2012年互花米草大规模入侵后,海三棱藨草生物量显著减小,全年CH4排放通量减小为0.55 mg·m-2·h-1.Pearson相关性分析表明,沉积物有机碳含量、光合有效辐射及含水率等均不是影响长江口盐沼带湿地CH4排放的重要环境因子.在2011年,海三棱藨草生物量(p=0.001,r=0.928)、气温(p0.01,r=0.432)均与CH4排放通量呈现显著正相关,全年CH4最大排放通量出现在生物量最大的夏季8月份;2012年随着互花米草的入侵,CH4排放通量在5月份达到了最大值,自5月份之后逐渐减小,互花米草的入侵使长江口中潮滩盐沼带湿地CH4排放通量整体呈现出了下降的趋势.  相似文献   

6.
CH4 emissions from two sources of emission inventory data i.e. the National Communications and the EDGAR/GEIA database, are compared with emission estimates from six global and two regional atmospheric transport models. The emission inventories were compiled using emission process parameters to establish emission factors and statistical data to derive activity data. The emission estimates were derived from an evaluation of atmospheric transport modelling results and measured concentrations of CH4. The comparison of emission inventories and the emissions derived from atmospheric transport models shows the largest differences on the global scale to occur in biogenic CH4 emissions, i.e. by wetlands and biomass burning. Anthropogenic CH4 emissions due to oil and gas production and distribution, also appear rather uncertain, especially with respect to the spatial distribution of the sources. A comparison of CH4 emissions on a smaller scale (NW Europe) showed a fair amount of agreement between National Communications, EDGAR data and results of inverse atmospheric modelling. Because most of the CH4 emissions in this area come from reasonably well-known CH4 emission sources like ruminants and landfills, this is a good argument. CH4 emission from some areas in the North Sea was underestimated by inventories. This could be due to CH4 emissions of oil production platforms in the North Sea.  相似文献   

7.
The greenhouse gas emissions from agricultural systems contribute significantly to the national budgets for most countries in Europe. Measurement techniques that can identify and quantify emissions are essential in order to improve the selection process of emission reduction options and to enable quantification of the effect of such options. Fast box emission measurements and mobile plume measurements were used to evaluate greenhouse gas emissions from farm sites. The box measurement technique was used to evaluate emissions from farmyard manure and several other potential source areas within the farm. Significant (up to 250 g CH4 m−2 day−1and 0.4 g N2O m−2 day−1) emissions from ditches close to stables on the farm site were found.Plume emission measurements from individual manure storages were performed at three sites. For a manure storage with 1200 m3 dairy slurry in Wageningen emission factors of 11 ± 5 g CH4 m−3 manure day−1 and 14 ± 8 mg N2O m−3 manure day−1 were obtained in February 2002.Mobile plume measurements were carried out during 4 days at distances between 30 and 300 m downwind of 20 different farms. Total farm emissions levels ranged from 14 to 95 kg CH4 day−1 for these sites. Expressed as emission per animal the levels were 0.7 ± 0.4 kg CH4 animal−1 day−1 for conventional farms. For three farms that used straw bedding for the animals1.4 ± 0.2 kg CH4 animal−1 day−1 was obtained. These factors include both respired methane and emission from manure in the stable and the outside storages.For a subset of these farms the CH4 emission was compared with monthly averaged model emission calculations using FarmGHG. This model calculates imports, exports and flows of all products through the internal chains on the farm using daily time steps. The fit of modelled versus measured data has a slope of 0.97 but r2 = 0.27. Measurements and model emission estimates agree well on average, for large farms within 30%. For small farms the differences can be up to a factor of 3. CH4 emissions during winter seem to be underestimated.  相似文献   

8.
We have measured, using a conventional discharge-flow resonance-fluorescence technique, the rates of reaction between the hydroxyl radical and a series of halogenated ethanes and ethers for the temperature range 230–423 K. Our measurements gave the following Arrhenius expressions (units are cm3 molecule−1 s−1): CF2HCH3 (HFC-152), 14.2 × 10−13 exp-(1050/T); CF2ClCH3 (HCFC-142b), 2.6 × 10−13 exp-(1230/T); CFCl2CH3 (HCFC-141b), 5.8 × 10−13 exp-(1100/T); CF3CFH2 (HFC-134a), 5.8 × 10−13 exp-(1350/T); CF3CF2H (HFC-125), 2.8 × 10−13 exp-(1350/T); CF3CCl2H (HCFC-123), 11.8 × 10−13 exp-(900/T); CF2HOCF2CFClH, (enflurane), 6.1 × 10−13 exp-(1080/T); CFH2OCH(CF3)2, (sevoflurane), 15.3 × 10−13 exp-(900/T). In two cases, we measured rate constants only at room temperature: CF3CClBrH (halothane), 6 × 10−14 and CF2HOCClHCF3 (isoflurane), 2.1 × 10−14.We also report the following values for the integrated absorption cross-sections of the compounds in the spectral region 800–1200 cm−1 in units of cm−2 atm−1: CF2HCH3, 1155; CF2ClCH3, 1422; CFCl2CH3, 1995; CF3CFH2, 2686; CF3CF2H, 1970, CF3CCl2H, 1411; CF3CClBrH, 1400; CF2HOCF2CFClH, 4800; CF2HOCClHCF3, 3900; CFH2OCH(CF3)2, 2550. We use our measurements to calculate ozone depletion potentials and greenhouse warming potentials relative to CFCl3 for each compound.  相似文献   

9.
The variations of CO2, CH4, COS, and NMHC concentrations, and of 222Rn activity were studied simultaneously in the boundary layer in a littoral site in Brittany, France. Various meteorological conditions occurred during the experiment allowing determination of trace gas concentrations characteristic of air masses having either dominant continental or oceanic influence. The relative NMHC concentration of the air reflects the origin of the air masses. Oceanic air is characterized by high proportions of alkenes, whereas the alkanes concentration is higher in continental air masses.In 1986 alternate sea- and land-breeze conditions allowed measurement of the evolution of the composition of an oceanic air mass under continental influence. By using the variabilities of 222Rn activities measured during the experiment, as well as the estimation of its mean flux over continents, we deduced the mean regional fluxes of CO2, CH4 and COS to be 5.8, 0.07 and −36 × 10−6 m mol m−2 h−1, respectively.  相似文献   

10.
A research cruise was conducted in the summer of 1986 by a group of scientist from the U.S.A. and Mexico to investigate air chemistry over the Gulf of Mexico. Chemical, physical, meteorological and oceanographic measurements were carried out to survey temporal and spatial variations of diverse parameters throughout the Gulf. Emphases were placed on air-sea-land exchange of gases and aerosols, natural air quality, transport of anthropogenic air pollution, and acid rain deposition to the Gulf. Although the prevailing winds were easterly from the sea during the cruise, the air was highly polluted with continental aerosols, probably caused by local shifting winds and the oscillation between sea breeze and land breeze. Aerosol number concentrations were measured from 105 cm−3 at ports to 103 cm−3 in the open Gulf. The average aerosol mass concentration was ∼25μg M−3, consisting of 60% insoluble crustal particles that contained Si, Al, Fe; 30% seasalt particles that contained Na+ and Cl; and 10% anthropogenic sulfate and nitrate particles. Samples of rain water collected near the coast were acidic (pH ∼4). The concentrations of dimethyl sulfide correlated with bio-particle concentrations in surface seawater and could be a significant precursor of atmospheric SO42− particles. The life cycles of the aerosols in the Gulf, including sources, transport, transformation, and wet and dry deposition are discussed.  相似文献   

11.
The methane oxidation chain (MOC) is the sequence of reactions initiated by the reaction of a CH4 molecule with an OH radical, which results in the net production (or destruction) of OH, CO and O3. We have developed the yield coefficient method to calculate, as functions of latitude and altitude, the monthly average net yield of OH, CO and O3 from the MOC. These yield coefficients are then used to estimate the monthly average production rates of these species from the MOC.Globally, the MOC results in a net annual loss of about 0.22 molecules of OH for every methane molecule destroyed. The average annual yield of CO from the MOC is about 0.82 molecules of CO per molecule of methane destroyed (∼ 550 Tg CO y−1). The methane oxidation chain also produces about 1.15 molecules of ozone for every molecule of methane destroyed. The seasonal cycles, spatial distributions and even the signs of the OH, O3 and CO yield coefficients are sensitive to the assumed input distributions of OH, HO2 and NOx. The recent re-measurement of the reaction rate of OH+CH4 (Vaghjiani and Ravishankara, 1991, Nature350, 406–409) suggests that the entire MOC may be running slower than previously thought. The effect of this new measurement is to reduce the global annual average production rates of CO and O3 by about 23%.  相似文献   

12.
Atmospheric sulphate, nitrate, chloride and ammonium species have been measured with colocated filter pack and denuder samplers. In general the total amount of a species collected by the two types of sampler was almost the same, although there was evidence of better inlet efficiency for particles in the filter pack sampler. The filter pack gives slightly higher measurements of the volatile species HNO3, HCl and NH3 than the denuder, with a corresponding lower measure of particulate NO3, Cl and NH4+, attributable to volatilization of ammonium salts from the filter pack pre-filter. In the context of most ambient measurements, the divergences between the techniques are small, and it is argued that differences in these measurement techniques are inevitably site, operator and apparatus-specific and data from one site or research group cannot readily be extrapolated to other sites.  相似文献   

13.
There is an increasing world wide demand for energy crops and animal manures for biogas production. To meet these demands, this research project aimed at optimising anaerobic digestion of maize and dairy cattle manures. Methane production was measured for 60 days in 1 l eudiometer batch digesters at 38 °C. Manure received from dairy cows with medium milk yield that were fed a well balanced diet produced the highest specific methane yield of 166.3 Nl CH4 kg VS−1. Thirteen early to late ripening maize varieties were grown on several locations in Austria. Late ripening varieties produced more biomass than medium or early ripening varieties. On fertile locations in Austria more than 30 Mg VS ha−1 can be produced. The methane yield declined as the crop approaches full ripeness. With late ripening maize varieties, yields ranged between 312 and 365 Nl CH4 kg VS−1 (milk ripeness) and 268–286 Nl CH4 kg VS−1 (full ripeness). Silaging increased the methane yield by about 25% compared to green, non-conserved maize. Maize (Zea mays L.) is optimally harvested, when the product from specific methane yield and VS yield per hectare reaches a maximum. With early to medium ripening varieties (FAO 240–390), the optimum harvesting time is at the “end of wax ripeness”. Late ripening varieties (FAO ca. 600) may be harvested later, towards “full ripeness”. Maximum methane yield per hectare from late ripening maize varieties ranged between 7100 and 9000 Nm3 CH4 ha−1. Early and medium ripening varieties yielded 5300–8500 Nm3 CH4 ha−1 when grown in favourable regions. The highest methane yield per hectare was achieved from digestion of whole maize crops. Digestion of corns only or of corn cob mix resulted in a reduction in methane yield per hectare of 70 and 43%, respectively. From the digestion experiments a multiple linear regression equation, the Methane Energy Value Model, was derived that estimates methane production from the composition of maize. It is a helpful tool to optimise biogas production from energy crops. The Methane Energy Value Model requires further validation and refinement.  相似文献   

14.
应用半静态双箱动力学模型在室内模拟了缢蛏(Sinonovacula constricta)对燃料油(0#柴油)和东海平湖原油乳化液的生物富集实验,通过对富集与释放过程中缢蛏体内石油烃的动态检测以及对检测结果的非线性曲线拟合,获得缢蛏对0#柴油、原油乳化液的吸收速率常数k1、释放速率常数k2、生物富集因子BCF、平衡状态下缢蛏体内石油烃含量C Amax、生物学半衰期B1/2等动力学参数.拟合结果得到的各动力学参数平均值分别为:缢蛏对0#柴油乳化液的吸收速率常数k1为10.67、k2为0.0795、BCF为122.56、C Amax为129.07 mg·kg-1、B1/2为9.61 d;缢蛏对原油乳化液的吸收速率常数k1为7.79、k2为0.0948、BCF为89.38、C Amax为110.68 mg·kg-1、B1/2为7.88 d.缢蛏对0#柴油、原油乳化液的吸收速率常数k1、BCF均随外部水体中石油烃浓度的增大而减少,对0#柴油、原油乳化液的释放速率常数k2与外部水体中石油烃浓度无明显相关性,C Amax随外部水体中石油烃浓度的增大而增大.对模型的拟合优度检验结果显示,模型的拟合优度良好.0#柴油在缢蛏体内的富集量高于原油乳化液、释放量低于原油乳化液,其原因与不同种类石油的烃类组分有关.  相似文献   

15.
以过一硫酸氢盐(PMS)作为氧化剂,利用化学吸收氧化法去除甲硫醇(CH3SH)恶臭气体.研究了p H(2~13)对CH3SH吸收过程、PMS氧化降解CH3SH过程的影响.结果表明,PMS不同于H2O2,在p H小于CH3SH p Ka(10.3)的弱碱性条件(p H=8~10)下,也可以有效去除CH3SH,而此时H2O2对CH3SH没有去除效果.可能的原因是,在弱碱性条件(p H=8~10)下PMS或可能产生的活性物种在气液相界面直接快速氧化CH3SH分子.  相似文献   

16.
Meteorological and chemical conditions during the July 1988 Bermuda-area sampling appear to have been favorable for conversion of sulfur gases to particulate excess sulfate (XSO4). Observed average XSO4 and SO4 concentrations of 11 and 2.1 nmol m−3, respectively, at 15 m a.s.l. in the marine boundary layer (MBL) upwind of Bermuda, indicate that conversion of SO2 to XSO4, over and above homogeneous conversion, may be necessary to explain the > 5.0 average molar ratio of XSO4 to SO2. Given an observed cloud cover of <15% over the region and the <3 nmol m−3 SO3 concentrations observed by aircraft, heterogeneous conversion mechanisms, in addition to cloud conversion of SO2, are necessary to explain the observed 11 nmol XSO4 m−3.Aerosol water content, estimated as a function of particle size distribution plus consideration of SO2 mass transfer for the observed particle size distribution, shows that SO2 was rapidly transferred to the sea-salt aerosol particles. Assuming that aqueous-phase SO2 reaction kinetics within the high pH sea-salt aerosol water are controlled by O3 oxidation, and considering mass-transfer limitations, SO2 conversion to XSO4 in the sea-salt aerosol water occurred at rates of approximately 5% h−1 under the low SO2 concentration, Bermuda-area sampling conditions. All of the 2 nmol XSO4 m−3 associated with sea-salt aerosol particles during low-wind-speed, Bermuda-area sampling can be explained by this conversion mechanism. Higher wind speed, greater aerosol water content and higher SO2 concentration conditions over the North Atlantic are estimated to generate more than 4 nmol XSO4 m−3 by heterogeneous conversion of SO2 in sea-salt aerosol particles.  相似文献   

17.
Present methane concentrations in the northern troposphere average 1.65 ppm. Most CH4 is of recent biogenic origin. 14C analyses indicate that no more than 10% is released by fossil sources. The various CH4-producing ecosystems are described and the total annual production is estimated to lie between 5.9×1014 and 9.3×1014 g/y. CH4 is destroyed through photochemical oxidation mainly in the troposphere. In this process CH2O, H2, and CO are produced as intermediates. Tropospheric CH4 provides an important source of stratospheric water vapor.  相似文献   

18.
Methane measurements from weekly air samples collected at Tae-ahn Peninsula, Korea (TAP) present new constraints on the regional methane source strength of eastern Asia. Analysis of atmospheric trajectories shows that the lowest methane values observed at Tae-ahn are associated with southeasterly flow off the tropical Pacific Ocean and are similar to those observed at Cape Kumukahi, Hawaii. During June to August, northwesterly flow from the peat-rich wetlands located in the maritime provinces of the Far East former Soviet Union elevates methane at TAP by ∼80 ppb above the annual mean. Analysis of the Tae-ahn observations using a 3-D atmospheric methane model suggests that methane emission rates from the Far East Soviet wetlands may be ∼2 times those of Alaskan wetlands. Also, the relative maximum in May June at Tae-ahn constraints global CH4 emissions from rice cultivation to ∼100 Tg yr−1.  相似文献   

19.
Twenty-eight radiochemical 14C tracer measurement of tropospheric hydroxyl radical (OH) concentrations were obtained at a rural site near Washington State University, Pullman, WA (117°W, 47°N). Diurnal OH concentration variations were observed for the five days between 9 August and 14 August 1990. These data made it possible to estimate the midday precision and detection limit of the radiochemical OH measurement method. Experiments performed at a peak O3 photolysis rate J (O(1D)) of (3.0±0.2) × 10−5 s−1 yielded a mean midday OH concentration of (5.6±0.1 (1σ)) × 106 cm−3. Other data put an upper bound of 16% on fluctuations of instrument sensitivity. Low-light or nighttime background OH concentrations were less than (2.6±2) × 105 cm−3. A lower detection limit of 105 cm−3 was obtained when extra care was taken with the low-level 14C counting procedure.  相似文献   

20.
Wastewater with relatively high nitrogen concentrations is a major source of nitrous oxide (N2O) and methane (CH4) emissions and exerts multiple stresses on the environment. Studies have shown that plant diversity plays an important role in ecosystem functioning. However, the effects of plant species diversity on CH4 and N2O emissions under high ammonium (NH4+-N) loading rates remain unclear. In this study, a microcosm experiment simulating vertical constructed wetlands supplied with high NH4+-N water levels was established. The treatments included four species richness levels (1, 2, 3, 4) and 15 species compositions. There was no significant relationship between species richness and N2O emissions. However, N2O emissions were significantly reduced by specific plant species composition. Notably, the communities with the presence of Rumex japonicus L. reduced N2O emissions by 62% compared to communities without this species. This reduction in N2O emissions may have been a result of decreased N concentrations and increased plant biomass. CH4 emissions did not respond to plant species richness or species identity. Overall, plant species identity surpassed species richness in lowering N2O emissions from constructed wetlands with high NH4+-N water. The results also suggest that communities with R. japonicus could achieve higher N removal and lower greenhouse gas emissions than other wetland species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号