首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
广州城市大气HOx化学过程初步研究   总被引:3,自引:0,他引:3  
根据广州城市大气中OH自由基和其它污染物同步测量结果,计算了城市大气HOx(OH+HO2)化学过程中主要反应的转化速率,分析了城市大气化学过程的主要特征,并与清洁大气中的化学过程进行了对比.研究结果表明:广州城市大气中OH和HO2总的生成速率分别约为4.5×108分子/(cm3·s)和3.8×108分子/(cm3·s),比清洁大气中要快得多;城市大气中的OH净生成主要来自气相HNO2的光解,而OH的去除主要与VOCs、HCHO、NO2和CO反应,有别于清洁大气.  相似文献   

2.
This review surveys the present state of knowledge of the nitrate (NO3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry.The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented.The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way in which data must be analysed, and to the type of mechanistic information that can be extracted. Continuous and stopped flow, flash photolysis and pulse radiolysis, molecular modulation, and static reactor techniques can all provide absolute kinetic data, while relative rate measurements have been a further rich source of information.The treatment of the chemical reactions of the nitrate radical is formally divided into the interactions with non-radical inorganic (deemed to include NO and NO2) and organic species, and with atoms and free radicals. In general, the reactions with open-shell species are much more rapid than those with closed-shell reactants. With the closed-shell partners, addition reactions are faster than abstraction reactions. An attempt is made to consider critically the published data on most reactions of importance, and to tabulate rate constants and temperature dependences where possible. However, it is not the objective of this review to provide recommendations for rate parameters. Evidence for the products of the reactions is sought, and for the branching ratios into the various channels where more than one exists. One theme of this part of the review is the elucidation of correlations of reactivity with structure and with the reactions of other radical species such as OH.The review turns next to a consideration of the role of NO3 in the atmosphere, of its atmospheric sources and sinks, and of field measurements of concentrations of the radical. Long-path visible-absorption spectroscopy and matrix-isolation ESR have both been used successfully in field measurements in the troposphere as well as the stratosphere. Balloon-borne instruments and ground-based remote sensing have been used to obtain stratospheric concentrations. Two of the most important implications of the measurements are that the stratospheric profiles are consistent with accepted chemistry (and, in particular, do not require the postulation of an unidentified scavenging mechanism that had, at one stage, been proposed), and that the highly variable night-time tropospheric concentrations imply that NO3 is a reactive tropospheric constituent. The inter-relation between laboratory studies and atmospheric observations, and the problems in extrapolating laboratory data to atmospheric conditions, are both explored. Initiation of night-time chemical transformations by NO3 and the possible production of OH are considered. The available information is then brought together to see how far NO3 is a sensitive indicator of the state of the atmosphere, and some speculations are presented about the involvement of NO3 (or N2O5) in damage to trees and plants.The final section of the review suggests some issues that remain unresolved concerning the NO3 radical which is directly or indirectly relevant to a better knowledge of the part played by the radical in the atmosphere. Amongst the requirements noted are improved data for the heat of formation of the radical, its absorption cross section in the visible region (and, especially, the temperature dependence of the cross section), and the details of its photochemistry. There is also still a need for a definitive determination of the equilibrium constant and its temperature dependence for the association with NO2 and the reverse dissociation of N2O5. A series of chemical reactions deserves further investigation, especially with regard to elucidation of product channels, and overall oxidation mechanisms also need to be defined better. Future atmospheric studies that are desirable include study of basic NO3 chemistry in the field to understand the influence of humidity on the conversion (probably on surfaces) of N2O5 to HNO3, and thus on NO3 concentrations. In addition, a study of the chemistry of NO3 in the presence of volatile organic compounds and at elevated concentrations of the oxides of nitrogen should help in the understanding of, for example, polluted marine coasts, forests, and urban areas.  相似文献   

3.
上海市大气中HO2自由基的测定与特征   总被引:3,自引:1,他引:2  
为研究上海市大气中HO2自由基的分布特征,建立了化学放大法测定HO2自由基系统,对上海市大气中HO2自由基浓度进行了没定邦等结果表明,HO2自由基的典型日变化基本上为双峰型,峰值出现在阳光辐射较强的中午时分,实验测得HO2自由基最大浓度达2.24×10^8分子·cm^-3,HO2自然基民NMHC,C烽O2等具有一定的相关性,HO2自由基的研究对于大气光化学烟雾的研究具有重要意义  相似文献   

4.
VOCs在大气中主要是与OH自由基、NO3自由基和O3等反应氧化去除,部分OVOCs的自身光解也是重要的化学去除途径.本研究基于2018年和2019年秋季在珠三角地区的城市和区域站点的外场观测实验,使用VOCs、常规痕量气体及气象参数的观测数据,对烷烃、烯烃、芳香烃和OVOCs等VOCs组分不同化学去除途径的去除速率进行分析.结果表明,烷烃和芳香烃主要通过与OH自由基反应去除,最高占比超过99%.与NO3自由基和O3的反应可贡献烯烃去除速率的80%以上,特别是一些天然源的烯烃(如单萜烯)与NO3自由基的氧化去除是贡献最大的氧化途径.光解是甲醛最重要的去除途径,在两个站点均达到了50%以上,酮类的光解贡献会高于其他OVOCs类物质.OH自由基的氧化去除途径在城市和区域站点的人为源及天然源VOCs去除中占主导地位.区域站点,烯烃尤其是天然源的烯烃物种,与NO3自由基和O3反应的贡献要高于城市站点.本研究对促进不同VOCs物种在大气中的去除途径以及其空间差异的认识有重要意义.  相似文献   

5.
As an important precursor of hydroxyl radical, nitrous acid (HONO) plays a key role in the chemistry of the lower atmosphere. Recent atmospheric measurements and model calculations show strong enhancement for HONO formation during daytime, while they are inconsistent with the known sources in the atmosphere, suggesting that current models are lacking important sources for HONO. In this article, heterogeneous photochemical reactions of nitric acid/nitrate anion and nitrogen oxide on various aerosols were reviewed and their potential contribution to HONO formation was also discussed. It is demonstrated that HONO can be formed by photochemical reaction on surfaces with deposited HNO3 , by photocatalytic reaction of NO2 on TiO2 or TiO2 -containing materials, and by photochemical reaction of NO2 on soot, humic acids or other photosensitized organic surfaces. Although significant uncertainties still exist in the exact mechanisms and the yield of HONO, these additional sources might explain daytime observations in the atmosphere.  相似文献   

6.
2020年8月利用化学放大法对合肥市西郊大气总过氧自由基RO*2·(RO2·+HO2·)体积分数进行监测,并结合O3和其前体物,分析了过氧自由基体积分数、O3生成速率和O3生成对前体物的敏感性.结果表明,观测期间总过氧自由基体积分数的日均值呈典型的单峰型变化,12:00左右出现最高值,日间峰值体积分数为43.8×10-12,日间RO*2·与太阳辐射强度、温度和O3呈明显的相关性.利用实测RO*2·和NO,获得合肥市西郊夏季O3生成速率,日间峰值为10.6×10-9h-1,O3生成速率对NO变化更为敏感.基于大气自由基和NOx(NO+NO2)反应去除速率占比(Ln/Q),对合肥...  相似文献   

7.
Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.  相似文献   

8.
Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles.  相似文献   

9.
通过烟雾箱实验,研究了仲丁醇对苯乙烯臭氧化反应生成二次有机气溶胶(SOA)的影响.结果发现,在烟雾箱实验中,过量仲丁醇的加入导致生成SOA的产率明显下降.同时,结合MCM气相机理和气-粒分配理论,将Criegee中间体与醛类的双分子反应添加到箱式模型中模拟烟雾箱中SOA的生成过程.模拟结果表明,在没有仲丁醇存在的情况下,次级臭氧化物在SOA组分中占1/2左右的比例.仲丁醇的加入消耗了大量的·OH,同时使得[HO_2]/[RO_2]比值升高,影响自由基相关的反应机制,使得SOA产率下降.另外,研究发现,Criegee中间体与醛类反应的速率常数也是影响SOA生成模拟的一个重要参数,需要进一步开展相关的动力学实验和理论研究.  相似文献   

10.
The rate constants for the gas-phase reactions of sabinene and camphene, two monoterpenes emitted from vegetation, with OH and NO3 radicals and O3 have been determined at 296±2 K and one atmosphere total pressure of air. The OH and NO3 radical reaction rate constants were determined using relative rate techniques. Using rate constants of k(OH + isoprene) = 1.01 × 10−10 cm3 molecule−1 s−1, k(NO3 + trans-2-butene) = 3.87 × 10−13 cm3 molecule−1 s−1 and k(NO3 + 2-methyl-2-butene) = 9.33 × 10−12 cm3 molecule−1 s−1, the following OH and NO3 radical reaction rate constants (in cm3 molecule−1 s−1 were obtained: OH radical reaction; sabinene, 1.17 × 10−10 and camphene, 5.33 × 10−11; NO3 radical reaction; sabinene, 1.01 × 10−11, and camphene, 6.54 × 10−13. The absolute O3 reaction rate constants determined were (in cm3 molecule−1 s−1 units): sabinene, 8.07 × 10−17, and camphene, 9.0 × 10−19. These rate constants are compared to literature data for other structural-related alkenes and monoterpenes.  相似文献   

11.
During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO2) and superoxide (O2) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO2/O2. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO2/O2, and cycled between the Cu(II) and Cu(I) forms. Cu+ reacted with FeOH2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 107 M−1s−1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO2/O2. Only at high oxalate concentrations was the Fe(II)C2O4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide (k = (3.1 ± 0.6) × 104 M−1s−1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH2+ with Cu(I) and HO2/O2, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO2/O2, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO2/O2.  相似文献   

12.
The nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play an important role in the nocturnal atmosphere chemistry. Observations of NO3 radicals and N2O5 were performed in a semirural ground site at Tai'Zhou in polluted southern China using cavity ring down spectroscopy (CRDS) from 23 May to 15 June 2018. The observed NO3 and N2O5 concentrations were relatively low, with 1 min average value of 4.4 ± 2.2 and 26.0 ± 35.7 pptV, respectively. The N2O5 uptake coefficient was determined to be from 0.027 to 0.107 based on steady state lifetime method. Fast N2O5 hydrolysis was the largest contributor to the loss of NO3 and contributed to substantial nitrate formation, with an average value of 14.83 ± 6.01 µg/m3. Further analysis shows that the N2O5 heterogeneous reactions dominated the nocturnal NOx loss and the nocturnal NOx loss rate is 0.14 ± 0.02 over this region.  相似文献   

13.
Most previous O3 simulations were based only on gaseous phase photochemistry. However, some aerosol-related processes, namely, heterogeneous reactions occurring on the aerosol surface and photolysis rate alternated by aerosol radiative influence, may affect O3 photochemistry under high aerosol loads. A three-dimensional air quality model, Models-3/Community Multi-scale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution, was employed to simulate the effects of the above-mentioned processes on O3 formation under typical high O3 episodes in Beijing during summer. Five heterogeneous reactions, i.e., NO2, NO3, N2O5, HO2, and O3, were individually investigated to elucidate their effects on O3 formation. The results showed that the heterogeneous reactions significantly affected O3 formation in the urban plume. NO2 heterogeneous reaction increased O3 to 90 ppb, while HO2 heterogeneous reaction decreased O3 to 33 ppb. In addition, O3 heterogeneous loss decreased O3 to 31 ppb. The effects of NO2, NO3, and N2O5 heterogeneous reactions showed opposite O3 concentration changes between the urban and extra-urban areas because of the response of the reactions to the two types of O3 formation regimes. When the aerosol radiative influence was included, the photolysis rate decreased and O3 decreased significantly to 73 ppb O3. The two aerosol-related processes should be considered in the study of O3 formation because high aerosol concentration is a ubiquitous phenomenon that affects the urban- and regional air quality in China.  相似文献   

14.
Inorganic and organic peroxides have become the focus of increased attention by atmospheric chemists during the last decade. Hydrogen peroxide serves as an important link between gas phase radicals and aqueous phase chemistry in the atmosphere. As an important aqueous phase oxidant of S(IV), H2O2 plays a major role in the acidification of clouds, fogs, dew and rain. Several studies have indicated that peroxides and their precursor radicals cause damage to a variety of plant tissue.In this article we review analytical techniques, discuss and review the various sources of peroxides in the gas and aqueous phases and examine their reactions with S(IV) and N(III).  相似文献   

15.
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.  相似文献   

16.
A statistically significant linear correlation between the reaction, kNO3, for the NO3 free radical reaction with 69 organic compounds in the gas phase at 298 K and the corresponding vertical ionization energies, Ei,v, allows an a priori prediction to be made of hitherto not measured compounds. With these reaction rate constants and a mean concentration of NO3 during the night, the upper limit of the tropospheric half-life of organic compounds and their persistence in the troposphere can be estimated. From the fairly good linear correlation between kNO3 and kOH it can be deduced that in the gas phase both free radicals react in a very analogous manner with organic compounds.  相似文献   

17.
以乙腈作为含氰废气的典型组分,考察吸收协同不同高级氧化体系下低浓度乙腈的去除效率以及产物分配情况.研究结果表明:UV/PS和VUV/PS体系均能有效吸收并降解乙腈,在60 min内其脱除效率近100%,且矿化率近80%或以上.主要原因是吸收液中的过硫酸盐(PS)可以在紫外光的激发下产生大量的HO·和SO4·-,这些自由基可以促进乙腈和中间产物的氧化.同时实验还观察到乙腈中的氮元素主要被转化为NO3-和NH4+,这说明乙腈的直接氧化和水解反应同时进行.NO3-的累积会竞争消耗反应体系中的自由基,这是其稳定性实验中乙腈矿化率下降的主要原因.此外,干扰离子Cl-也会由于自由基的捕获作用抑制乙腈的降解.最后,根据产物的分析结果,提出了包含氧化与水解路径的乙腈总体降解反应途径.  相似文献   

18.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

19.
The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H_2O_2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO_2./O_2~-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested.  相似文献   

20.
The photochemical box model (PBM) developed in the present study is based on the principle of mass conservation. It has a horizontal domain of the size of a typical city and a vertical dimension defined by the mixed-layer height. The concentration of any pollutant is determined by horizontal advection, vertical entrainment, source emissions and chemical reactions. A one-dimensional high resolution boundary layer model by Blackadar (Preprints, Third Symp. on Atmospheric Turbulence, Diffusion, and Air Quality, Raleigh, Am. Met. Soc., pp. 443–447, 1976; Advances in Environmental Sciences and Engineering, Vol. 1, No. 1 (edited by Pfafflin J. and Ziegler E.), pp. 50–85. Gordon and Breach, New York, 1979) has been incorporated in the PBM and further developed to consider the effect of urban heat islands in the simulation of mixed layer height. The predicted mixed-layer heights compare very well with observations. The gas phase chemical kinetic mechanism used in the Regional Acid Deposition Model II (RADM2) and that of an earlier version of PBM have been used to calculate the contributions of chemical reactions to the changes of pollutant concentrations. Detailed analysis and comparisons of the two chemical mechanisms have been made. The simulated pollutant concentrations using both chemical mechanisms are in very good agreement with available observations for CO, NO, NO2 and O3. A radiative transfer model developed by Madronich (J. geophys. Res.92, 9740–9752, 1987) has been incorporated in the PBM for the calculation of actinic flux and photolytic rate constants. Height-averaged and radiation-corrected photolytic rate constants are used for the photochemical reactions. Budget analyses conducted for CO, NO, NO2 and O3 have enhanced our understanding of the relative contributions of horizontal advection, vertical entrainment, source emissions and chemical reactions to the overall rate of change of their concentrations. Model predictions are not sensitive to the large number of peroxy radical-peroxy radical reactions in the RADM2 chemical mechanism under urban conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号