首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new zonally averaged two-dimensional chemical and transport model of the lower atmosphere has been used to study the budgets of photochemical oxidants on a global scale in the troposphere. The sensitivities of these budgets to controls on the emissions of NOx, CO and hydrocarbons from a variety of sources have also been considered. The species studied include O3, PAN, H2O2 and organic peroxides, as well as the global budget of the hydroxyl radical. The results show the relative impacts of emissions from natural and from man-made sources. Overall, some 75% of the turnover of tropospheric ozone results from in situ chemical production, with only 25% having its origins in the stratosphere. The respective fractions for chemical loss and dry deposition are similar. Of the ozone formed in situ, approximately one-third is formed from natural emissions, and two-thirds from man-made emissions. Over half of this man-made contribution is due to industrial society, with much of the rest being caused by biomass burning and methane emitted from paddy fields. Although reducing emissions of NOx is the most effective way of controlling tropospheric O3, this also increases the inventories of peroxides and the rate of increase in the concentration of methane, due to a reduction in the inventory of the OH radical. It is, therefore, necessary to control the emissions of a wide range of species in order to reduce the budget of all photochemical oxidants without adversely perturbing the budget of CH4.  相似文献   

2.
Following the Council Directive 92/72/EEC on air pollution by ozone the Member States of the European Union have to inform the European Commission on ozone concentrations and exceedances of threshold values within their territory. Using the available information covering the period of 5 years (1994–1998), the data has been analysed for a possible trend in statistical parameters (50- and 98-percentiles) and number and severity of exceedances. Time series are relatively short but the data suggest that there might be a small increasing trend in the 50 percentile values. The ozone peak values, expressed as 98-percentile values or as number of exceedance days tend to decrease. However, these conclusions must be interpreted carefully as on the short time scales considered here meteorological variations and inter-annual changes may play an important role. The decrease in peak values is most likely caused by the decrease in European ozone precursor emissions since 1990; insufficient data is available to explain the increasing 50-percentile values. Possible explanations are an increase in tropospheric ozone background values caused by a world-wide increase in CH4, CO and NOx emissions or a reduced ozone titration by reduced NOx emissions on the local scale. The data submitted under the ozone directive is insufficient to provide firm conclusions on this point.  相似文献   

3.
Physiological changes in crop plants in response to the elevated tropospheric ozone (O3) may alter N and C cycles in soil. This may also affect the atmosphere-biosphere exchange of radiatively important greenhouse gases (GHGs), e.g. methane (CH4) and nitrous oxide (N2O) from soil. A study was carried out during July to November of 2007 and 2008 in the experimental farm of Indian Agricultural Research Institute, New Delhi to assess the effects of elevated tropospheric ozone on methane and nitrous oxide emissions from rice (Oryza sativa L.) soil. Rice crop was grown in open top chambers (OTC) under elevated ozone (EO), non-filtered air (NF), charcoal filtered air (CF) and ambient air (AA). Seasonal mean concentrations of O3 were 4.3 ± 0.9, 26.2 ± 1.9, 59.1 ± 4.2 and 27.5 ± 2.3 ppb during year 2007 and 5.9 ± 1.1, 37.2 ± 2.5, 69.7 ± 3.9 and 39.2 ± 1.8 ppb during year 2008 for treatments CF, NF, EO and AA, respectively. Cumulative seasonal CH4 emission reduced by 29.7% and 40.4% under the elevated ozone (EO) compared to the non-filtered air (NF), whereas the emission increased by 21.5% and 16.7% in the charcoal filtered air (CF) in 2007 and 2008, respectively. Cumulative seasonal emission of N2O ranged from 47.8 mg m−2 in elevated ozone to 54.6 mg m−2 in charcoal filtered air in 2007 and from 46.4 to 62.1 mg m−2 in 2008. Elevated ozone reduced grain yield by 11.3% and 12.4% in 2007 and 2008, respectively. Global warming potential (GWP) per unit of rice yield was the least under elevated ozone levels. Dissolved organic C content of soil was lowest under the elevated ozone treatment. Decrease in availability of substrate i.e., dissolved organic C under elevated ozone resulted in a decline in GHG emissions. Filtration of ozone from ambient air increased grain yield and growth parameters of rice and emission of GHGs.  相似文献   

4.
Increasing global emissions of trace gases NO, CH4, and CO, along with perturbations initiated by changes in stratospheric O3 and H2O, may cause tropospheric hydrogen peroxide (H2O2) levels to change. Specific scenarios of CH4CONO emissions and global climate changes are used to predict HO2 and H2O2 changes from 1985 to 2035 in a one-dimensional model that simulates different chemically coherent regions (e.g. urban, non-urban continental and marine mid-latitudes; marine and continental low latitudes).If CH4 and CO emissions continue to increase throughout the troposphere at current rates (1% yr), there will be large increases in H2O2, for example, more than 100% in the urban boundary layer from 1985 to 2035. Globally, H2O2 will increase 22% with HO2 increasing 8% and O3 increasing 13%. When CH4, CO and NO emissions are specified on a regionally varying basis and are parameterized for high and low potential growth rates, globally averaged increases in surface concentrations are 12% for H2O2 and 18% for O3. A global warming (with increased H2O vapor) or stratospheric O3 depletion superimposed on CH4, CO and NO emissions changes will cut O3 increases but add to peroxide, increasing levels as much as 150% above present day in some regions.Both globally uniform and region-specific scenarios predict a 10–15% loss in global OH from 1985 to 2035. Thus, conversion of OH to HO2 and H2O2 in the atmosphere may signify a loss of gaseous oxidizing capacity in the atmosphere and an increase in aqueous-phase oxidizing capacity.  相似文献   

5.
臭氧在冰晶及硫酸铵和亚硫酸铵渗溶冰晶上的粘着系数   总被引:3,自引:0,他引:3  
利用流动管式反应器,在220-260K温度范围内,实验测量了臭氧在低温冰晶及硫酸铵和亚硫酸铵渗溶冰晶表面上的粘着系数.结果表明:臭氧在低温冰晶表面上的粘着系数随温度升高而增大, 其粘着系数为1.3×10-7-2.7×10-6; 臭氧在硫酸铵和亚硫酸铵渗溶冰晶表面上的粘着系数与二者浓度呈非线性关系; 利用实验结果估算了臭氧在极地平流层云中存留寿命约为56d, 臭氧在主要组成为水的冰晶表面上的损耗不容忽视.  相似文献   

6.
Aphid attacks and tropospheric ozone (O3) cause stress and considerable damage in both wild and cultivated plants. Induced defense responses to aphid attacks and O3 exposure share signaling pathways with common points. We investigated the plant–aphid interaction under O3 exposure using open-top O3 chambers. Ozone leaf injury was lower in aphid-infested plants than in aphid-free plants, although herbivore damage was not evident. Aphid population growth was strongly affected by previous exposure to O3 but no direct effect of O3 was observed. The possibility that during O3 episodes, herbivores may reduce O3 damage on host plants and that the offspring of the exposed aphids have lower population growth rates opens new and intriguing questions about potential effects of future increased tropospheric O3 levels on plant–insect interactions.  相似文献   

7.
In addition to causing domestic and regional environmental effects, many air pollutants contribute to radiative forcing (RF) of the climate system. However, climate effects are not considered when cost-effective abatement targets for these pollutants are established, nor are they included in current international climate agreements. We construct air pollution abatement scenarios in 2030 which target cost-effective reductions in RF in the EU, USA, and China and compare these to abatement scenarios which instead target regional ozone effects and particulate matter concentrations. Our analysis covers emissions of PM (fine, black carbon and organic carbon), SO2, NOx, CH4, VOCs, and CO. We find that the effect synergies are strong for PM/BC, VOC, CO and CH4. While an air quality strategy targeted at reducing ozone will also reduce RF, this will not be the case for a strategy targeting particulate matter. Abatement in China dominates RF reduction, but there are cheap abatement options also available in the EU and USA. The justification for international cooperation on air quality issues is underlined when the co-benefits of reduced RF are considered. Some species, most importantly SO2, contribute a negative forcing on climate. We suggest that given current knowledge, NOx and SO2 should be ignored in RF-targeted abatement policies.  相似文献   

8.
Attack by tropospheric hydroxyl radicals results in much shorter residence times for hydrofluorocarbons (HFCs) than for the fully halogenated chlorofluorocarbons (CFCs). Empirical structure-activity relations, previously calibrated for HFCs containing two carbon atoms, are used with semi-empirical and ab initio calculations to provide realistic first estimates of tropospheric lifetimes of various chlorine-free HFCs and hydrofluoroethers (HFEs) containing three carbon atoms. The heavily fluorinated HFEs are of particular interest in that they are likely to possess thermophysical properties which are suited to a range of applications for which CFCs are currently employed. Many of the HFEs are predicted to have shorter lifetimes than HFC-134a (CF3CH2F), which is already in large-scale commercial production as an alternative refrigerant. Factors are identified which appear to favour short lifetimes for HFEs.  相似文献   

9.
The effect of aircraft emissions on tropospheric ozone was studied using a two-dimensional zonal model, of longitude vs altitude, extending between 30°–60°N. An emission inventory for the 1987 civil aircraft fleet was constructed based on fuel usage and civil aviation statistics. The addition of the 1987 civil emissions to a modelled standard atmosphere caused increases in concentrations of O3 (12%; 10 ppbv), NOx (40%; 20 pptv) and OH (10%) between 8 and 12 km altitude. A doubling and tripling of the emissions corresponding to a present day inclusion of military aircraft and a future scenario, respectively, caused the increase in O3 to double (19%) and almost triple (25%). The lightning source of NOx was found to be an important parameter. When this source was ommitted the change in O3 at the cruise flight altitude increased to 16%, with respect to a standard atmosphere not containing a lightning source of NOx.  相似文献   

10.
以具有最大比三氯乙醛生成潜能(SCHFP)的苏氨酸为研究对象,分析了次氯酸钠(NaClO)、二氧化氯(ClO_2)、高锰酸钾(KMnO_4)、过氧化氢(H_2O_2)、臭氧(O_3)和臭氧过氧化氢(O_3/H_2O_2)等预氧化剂对三氯乙醛(CH)生成的影响,以确定合适的预氧化剂及其适宜投加量,为CH的控制提供指导.结果表明,能够有效去除一天CH生成量(CH1d)的预氧化方式依次为H_2O_2、ClO_2、KMnO_4和NaClO,适宜投加量分别为3、0.5、0.6和0.5mg·L-1,对CH1d相应的去除率分别为61.54%、47.63%、29.77%和10.94%;能够有效去除CH生成潜能(CHFP)的预氧化方式依次为KMnO_4、NaClO、H_2O_2和ClO_2,适宜投加量分别为0.6、0.5、3和0.5mg·L~(-1),对CHFP相应的去除率分别为41.01%、33.38%、8.36%和2.40%;O_3和O_3/H_2O_2预氧化能够使CH1d和CHFP增加,不适用于对CH的控制.  相似文献   

11.
A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by sector, both on a per country/region basis and on a 1°×1° grid. Developed by TNO and RIVM for constructing the Emission Database for Global Atmospheric Research (EDGAR) Version 2.0, in co-operation with the Global Emission Inventory Activity (GEIA) of IGAC/IGBP, the inventories meet the needs of both policy-makers and atmospheric modellers. The data sources for activity data, emission factors and grid maps are discussed with the focus on anthropogenic sources of primarily CO2, CH4 and N2O. The estimates of a standard group of anthropogenic sources are presented for each compound per world region.  相似文献   

12.
Ozone soundings from the 21-year record at Payerne (47°N, 7°E) are analysed. At the 300 mb level a simple statistical technique makes it possible to distinguish between the ozone of tropospheric photochemical origin and that in stratospheric intrusions. It is estimated that stratospheric intrusion is the source of 25% of the observed ozone mixing ratio at 300 mb. The maximum stratosphere to troposhere flux of ozone occurs in late winter/spring.A box model is developed for a Northern Hemisphere troposphere with stratosphere-troposphere exchange parameterized in terms of the baroclinic eddy activity but no tropospheric in situ source of ozone. It shows the same seasoanlity in ozone mixing ratio as the Payerne data, suggesting the assumed exchange mechanism to be reasonable.  相似文献   

13.
近年来,我国大气污染格局发生了深刻变化,PM2.5与臭氧(O3)成为影响我国城市和区域空气质量的主要空气污染物,二者协同控制已成为我国空气质量改善的焦点和打赢蓝天保卫战的关键.PM2.5与臭氧之间具有复杂的关联性,使得二者的协同控制具有复杂性与艰巨性.分析了PM2.5与臭氧成因的关联性及其相互影响,阐明了PM2.5与臭氧污染协同控制所涉及的重要科学问题,并在此基础上研究了目前我国PM2.5与臭氧的污染形势及二者的关联性,梳理了我国自2013年以来在PM2.5与臭氧污染控制中已采取的重要举措,论述了目前我国PM2.5与臭氧协同控制在科学与管理上所面临的挑战.结合对国外成功经验的分析,提出推进我国PM2.5与臭氧污染协同控制工作的相关建议:①加快监测能力建设,完善管理体系;②强化科技支撑,提高PM2.5与臭氧污染控制精准性;③加快构建VOCs与NOx治理技术体系;④加大VOCs与NOx的协同减排力度,保障减排方案落实到位.   相似文献   

14.
A parameterization scheme taking into account the episodical nature of rainout and incloud chemical transformation has been tested in a 2-D channel model. In the liquid phase many soluble gases are observed in concentrations never experienced in the gas phase. The effects on the trace gases SO2 and hydrogen peroxide, when they are modified by clouds and precipitation, are studied. When incloud interaction of SO2 and hydrogen peroxide is taken into consideration, calculated hydrogen peroxide profiles are brought closer to observed distributions. The effect of varying the time periods between cloud and rain events is tested. The impact on the formation and destruction of tropospheric ozone is also discussed.  相似文献   

15.
The Tropospheric Emissions Spectrometer (TES) aboard the National Aeronautics and Space Administration’s (NASA’s) Aura satellite launched in July 2004 is the first satellite instrument to provide simultaneous retrievals of ozone (O3) and carbon monoxide (CO) throughout the Earth’s lower atmosphere. This paper briefly reviews the TES instrument, the retrieval of O3 and CO profiles, and the validation of the retrievals. The applications of TES O3 and CO products include mapping the vertical and horizontal distribution of tropospheric O3 and CO and their correlations, examining the regional and continental outflow, and analyzing the variability of the two species associated with certain weather and climatic conditions, such as El Ni?o and the Asian monsoon. TES retrievals of O3 and CO offer an important new source of satellite data over China with good spatial and temporal coverage that can provide evaluation and constraints on the performance of chemical transport models in simulating the general features of ozone pollution over China. Special observations have been conducted and requests may be submitted to the TES team to make geographically focused observations of O3 and CO over China.  相似文献   

16.
杜楠  陈磊  廖宏  朱佳  李柯 《环境科学》2023,44(7):3705-3714
自2013年我国实施《大气污染防治行动计划》以来,大气颗粒物浓度显著降低,但臭氧(O3)污染日益严峻,同时对流层O3作为一种重要的温室气体,其辐射强迫能够影响天气和空气质量.利用双向耦合的区域空气质量模型WRF-Chem,再现2017年6月发生在华北地区的一次O3污染事件,通过敏感性试验分析对流层臭氧辐射强迫(TORF)对当地气象场的影响,以及改变的气象变量对O3空气质量的反馈作用.结果表明,WRF-Chem模式在气象要素的模拟上表现出较好的性能,并且能够很好地捕捉到O3浓度的时空演变特征.TORF使北京-天津-河北-山东地区的近地面气温平均升高0.23 K (最大增温可达0.8 K)、近地面相对湿度降低1.84%、边界层高度增加27.73 m.TORF对风速的影响较弱(-0.02 m ·s-1),但产生的西南风异常容易将上游污染地区的O3和其前体物输送至华北地区.在臭氧辐射反馈的影响下,研究区域内φ(O3)平均增加1.7%(1.23×10-9),而在污染严重的北京和天津地区,φ(O3)增加量最高可达5×10-9.进一步利用过程诊断分析法可以发现,增强的气相化学反应是TORF恶化近地面O3污染的主导原因.  相似文献   

17.
Considerable variations may exist in CH4 emissions from the Three Gorges Reservoir.  相似文献   

18.
During the 15 year period that the Zugspitze cable car has operated between the valley (1 km a.s.l.) and Zugspitze peak (3 km a.s.l.) at the northern border of the Bavarian Alps, it has been used for investigating the profiles of meteorological and atmospheric electrical parameters, and Aitken nuclei. This cable railway is rather steep and is suspended mostly far away from the ground. From 1980 to 1982 nearly 2000 ozone profiles were additionalyrecorded. The data collected offer a profound basis in order to study the time variations of the lower tropospheric ozone profile depending on the hour of the day during all the seasons. In this paper the following are reported: the shape and time behaviour of ozone profiles in different seasons depending on the vertical mixing intensity, stratospheric intrusions and the penetration depth of the stratospheric O3.  相似文献   

19.
富营养化湖区CH4排放特征及其影响因素   总被引:1,自引:0,他引:1  
为明确富营养湖区CH_4排放特征及其影响因素,对太湖梅梁湾湖区和湖心区进行为期1a的观测,分析影响富营养化湖泊CH_4扩散通量时空格局的环境要素.结果表明,太湖不同湖区均表现为大气CH_4的源,但富营养化梅梁湾湖区的CH_4扩散排放量[年均值:0. 140 mmol·(m~2·d)~(-1))]要明显高于中营养化湖心区的排放量[年均值:0. 024 mmol·(m~2·d)~(-1)],并且在富营养化湖区中,湖岸区的CH_4排放量最高. CH_4通量表现出显著的季节变化:夏季排放量最高,冬季排放量最低,并且季节间的差异可达一个数量级大小.太湖CH_4通量的空间变化与水体DOC浓度显著正相关(R~2=0. 62,P 0. 01),富营养化湖区中较高DOC浓度导致其出现高CH_4排放量.太湖CH_4扩散通量的时间变化受风速和水温等气象因素的驱动,部分水质因子对此有间接影响作用.鉴于湖泊CH_4扩散通量强烈的时空变化以及环境因素巨大的影响,湖泊CH_4排放量准确的估算依赖于较大空间和较长时间的观测.  相似文献   

20.
The application of NH4+-based fertilizers is a common practice in rice production. The immediate effect of a late season urea application on the processes involved in CH4 emission from a rice field was investigated on sandy loam located in the valley of River Po at Vercelli, northern Italy, and planted with rice (Oryza sativa, type japonica, variety Koral). Urea, applied at a rate of 50 kg N ha−1 on the 75th day after flooding, significantly stimulated both CH4 production and CH4 oxidation. During the following 9 days, the rates of CH4 production and CH4 oxidation in the 0–3 cm soil layer increased by 24–52 and 18–41%, respectively, of the fertilized plot compared to the unfertilized control plot. Methane oxidation on roots was also stimulated by urea, indicated by shorter lag times. Porewater concentrations of CH4 in the 0–6 cm soil layer increased with time and soil depth, but were not affected by fertilization with urea. Urea application also exhibited little impact on CH4 emission. During the 7 days following fertilization, urea only slightly reduced the CH4 flux. Ammonium originating from urea hydrolysis was completely depleted from the porewater within 3 days, mainly due to plant uptake. Fertilizer application did also not affect the contribution of CH4 oxidation to the net flux of CH4, determined by measuring δ13CH4 and by inhibition of CH4 oxidation. The absence of any effect of urea on net CH4 emission in this study was presumably caused by the rapid depletion of urea, the counterbalance between the increase of CH4 production and the increase of CH4 oxidation after fertilization, and methanogenesis in deeper soil layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号