首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper shows the possibility of moving in a matter of weeks from mesophilic (37°C) to thermophilic (55°C) conditions in the anaerobic digestion of the organic fraction of municipal solid waste (MSW) at high levels of solids (20%). After the temperature increases, a first pseudo steady-state condition can be reached after a month and a final steady-state condition after 2 months. No particular evidence of digester instability was observed using this approach in changing temperature range. The higher yields obtained in the latter condition (110% larger in terms of specific production) are shown.  相似文献   

2.
The anaerobic digestion of the organic fraction of municipal solid waste sorted by plant was investigated in a 3 m3 stirred digester, operating under mesophilic conditions. Yields of gas obtained at 7 kg total volatile solids per m3 per day and 15-day hydraulic residence time (about 10% biodegradeable solids, 20% total solids) were as much as 1.6 times the digester volume per day. Better sorting should improve the yields which already compare favorably with the existing literature data. A kinetic study on the substrate utilization was performed by employing the “first order” model.  相似文献   

3.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

4.
High solids anaerobic digestion of the mechanically sorted organic fraction of municipal solid waste under mesophilic and thermophilic conditions is reported. The semi-dry thermophilic process has a gas production rate two to three times the mesophilic process and nearly complete biodegradation. A 3 m3 stirred digester, feeding organic waste at 16–23% solids, was operated at hydraulic (volumetric) retention times decreasing from 15-8 days, and at organic loading rates increasing from 6 to 14 kg volatile solids m−3 day−1. An economic evaluation favours the thermophilic over the mesophilic process.  相似文献   

5.
Management of solid organic waste has become a major challenge in developing countries. Raw solid organic waste can be converted into biogas through anaerobic digestion; however, the efficiency of the process is influenced by various factors including the composition of the substrate. The present study was designed with the objective of enhancing the biodegradability of the organic fraction of municipal solid waste (OFMSW) and biogas production through co-digestion of the substrate with melon residues. The study was conducted in batch mode in four phases. The results revealed that an addition of melon waste at the rate of 300?g?kg?1 OFMSW substantially increased the biodegradation rate and biogas production compared to OFMSW alone. The removal of up to 57.2?% volatile solids and a carbon to nitrogen (C/N) ratio of 15.9 was achieved at a 60?% water level when the digestion mixture was treated with inocula collected from partially-degraded food waste. The findings of this study reveal that melon residues could be used as a potential co-substrate to enhance the biodegradability of OFMSW and biogas production.  相似文献   

6.
A pilot plant-scale composter using simulated solid waste was developed to test the fate of consumer products such as disposable diapers. The simulated waste consisted of a mixture of rabbit chow (which included alfalfa), shredded newspaper, sand, and composted cow manure. The compost mass self-heated from an ambient temperature of 27°C to about 55°C in the first 24 h. Dissolved ammonia levels, high in the early stages of the process, began to decrease after about 4 weeks as nitrate concentration began to increase. Both volatile solids and carbon:nitrogen ratios exhibited gradual decreases with time. Microbial biomass, esterase activity, cellulose mineralization, direct microscopic counts (AODC), and relative APIZYM enzyme activity increased significantly in the first several days, and maintained higher levels than initial measurements throughout the 22-week testing period. We concluded that the simulated solid waste underwent physical, chemical, and microbiological changes that would be expected to occur in municipal solid waste in a full-scale composting system. The pilot plant-scale composter should prove to be a valuable tool in assessing the fate of products and materials under simulated compost conditions.  相似文献   

7.
This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 degrees C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 degrees C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg(-1) of wet wasteday(-1). Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.  相似文献   

8.
A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 °C, 950 °C, and 1150 °C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 °C and 1150 °C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700–1000 °C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000–1200 °C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.  相似文献   

9.
Antimony volatilization in municipal waste incineration was studied. Two municipal waste samples and antimony(III) oxide (Sb4O6) were heated to 500°C and 700°C in an air stream in a quartz furnace. The volatilization of Sb4O6 occurred more at 700°C that at 500°C. Conversely, antimony volatilization form municipal waste was stronger at 500°C than at 700°C. This implies that antimony from municipal waste is volatilized as chloride instead of oxide. The chlorine sources for antimony chlorination, a gas-phase reaction involving hydrochloric acid and a solid-phase reaction of inorganic chlorine, e.g., CaCl2, were compared. Only the solid-phase reaction could offer enough active chlorine to induce chlorination of antimony oxide. Received: July 2, 1998 / Accepted: January 28, 1999  相似文献   

10.
 It is important to investigate the pyrolysis processes of municipal solid waste (MSW) in the same way as for any mixture comprised of multiple substances. In this article, a two-reaction model for a variety of MSW mixtures is proposed to predict mass changes due to pyrolysis. In order to formulate the model based on pyrolysis kinetics, we conducted experiments to determine the kinetic model parameters. By thermal analysis of the typical components of MSW, mass changes attributable to the pyrolysis reaction were found at about 350°C for paper, 400°–500°C for plastics, and 200°–400°C for garbage (dry condition). Activation energies were obtained by the Ozawa method based on the mass changes in pyrolysis. Thus, the pyrolysis behavior is formulated as a function of temperature. Then the pyrolysis mass change of the mixture can be predicted by using a weighted sum of the individual components. The model proved useful in experiments with real waste (refuse-derived fuels). Furthermore, the weight yields (pyrolysis gas, tars, solid residues) of the mixture can be calculated by their additive property after measuring the mass balance of each component. Received: May 11, 2001 / Accepted: November 16, 2001  相似文献   

11.
Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.  相似文献   

12.
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C32NH55O16.  相似文献   

13.
The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 °C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD5 and BOD5/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries.  相似文献   

14.

Anaerobic digestion (AD) is a well-established process for the treatment of a wide variety of solid organic substrates, including the organic fraction of municipal solid waste (OFMSW). At industrial scale, the mechanical pretreatment is a fundamental step to reduce OFMSW particle size and to promote the hydrolysis within the subsequent AD process. Among the mechanical pretreatment technologies, press-extrusion has recently raised great interest for its possible application to either enhance the organic load to the digester or improve the overall process stability and methane yields. Aim of this study was in assessing the potential of the press-extrusion pretreatment to improve the performance of OFMSW anaerobic degradation. Batch tests were set up according to a full factorial design of experiments to assess the significance of the main operating parameters. The statistical analysis of results addressed further tests, carried out under semi-continuous feeding mode, to better discuss the possible application of press-extrusion for the greatest valorization of OFMSW under anaerobic conditions.

  相似文献   

15.
Worldwide solid waste generation is nearly 1.3 billion tonnes/year, whereas in India 62 million tonnes of solid waste is generated per year by 377 million urban people. The increasing amount of solid waste in India, nearly 50% of which is organic matter, is the major concern for treatment and waste management. Several technologies are already in practice for the treatment of organic fraction of municipal solid waste (OFMSW) in India. It is important to assess the sustainability of these processes. In this study, the existing OFMSW technologies in India were examined. Case-study approach was taken for this purpose along with some published secondary reports. It was found that the selection of technology quite depends on the composition of the OFMSW. Food waste rich fractions are recommended for biomethanation, whereas the fractions rich in market waste and household waste are suitable for composting. Fractions rich in lignin and lignocellulosic materials are suitable for pyrolysis and gasification, whereas the rejects are to be sent for RDF preparation. Based on the findings, a sustainable framework has also been proposed, implementation of which may result in better waste management.  相似文献   

16.
Mesophilic anaerobic digestion (34 ± 1 °C) of pre-treated (for 20 min at 133 °C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VSfeed/m3 d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion.The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment.  相似文献   

17.
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 °C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.  相似文献   

18.
The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG–MS) analysis of the gaseous thermal decomposition products. Results of TG–MS analysis on RDF-I BA indicated that the LOI measured at 550 °C was due to moisture evaporation and dehydration of Ca(OH)2 and hydrocalumite. Results for the HW-I BA showed that LOI at 550 °C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO3 around 700 °C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO3 contents of the HW-I BA during TG–MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)2 in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650 °C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.  相似文献   

19.
Most landfilled plastic waste is a mixture or is in the form of composites with incombustible wastes such as glass, metals, and ceramics. After hydrothermal treatment, including a steam-explosion process, the separation of mixed waste (MW) into organic and inorganic substances becomes easy. However, the effect of hydrothermal pretreatment on the subsequent liquefaction of organic substances from MW is not obvious. In this study, the effects on the liquefaction of polystyrene and high-density polyethylene are discussed. Moreover, optimum conditions for the liquefaction of organic substances from hydrothermally treated MW are identified. By means of this hydrothermal pretreatment, including the steam-explosion process, polystyrene and high-density polyethylene can be significantly converted to oil by liquefaction at 300°–400°C. In comparison with liquefaction of hydrothermally pretreated mixed waste (HMW) at 300°–400°C with a batch type reactor, the yield of oil increases significantly on liquefaction using a semi-batch type reactor. It is considered that the radical chain and termination reactions among the radicals from HMW were inhibited in the semi-batch type reactor. On liquefaction of HMW in a semi-batch reactor, the conversion of HMW to oil was enhanced on increasing the liquefaction temperature to 350°C and the holding time to 60 min. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   

20.
Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous ‘wet’ and ‘dry’ digesters at organic loading rate (OLR) up to 6 kg volatile solids (VS) m?3 day?1. The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the ‘dry’ digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In ‘wet’ digestion a fine particle size led to severe foaming and the process could not be operated above 5 kg VS m?3 day?1. Although the trial was not designed as a direct comparison between ‘wet’ and ‘dry’ digestion, the specific biogas yield of the ‘dry’ digesters was 90% of that produced by ‘wet’ digesters fed on the same waste at the same OLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号