首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SO2 oxidation in the presence of NH3 was studied in a mixing-type continuous-flow cloud chamber. NaCl and soot particles (∼5–15 μ m−3) were used as cloud condensation nuclei. Cloud liquid water content was varied between 0.2 and 3 g m−3. SO2 and NH3 concentrations were 0.6 and 1.1 ppm, respectively. The contact time between the SO2 and the cloud drops was varied from 8 s to 3 min. Up to 80% of the input SO2 can be oxidized within short contact times in the presence of NH3 and when the water is in the condensed cloud-drop phase. Negligible sulfate formation was observed in the absence of the liquid phase regardless of the presence or absence of NH3. No significant dependence of the oxidation on the cloud condensation nuclei type nor the contact time was found. This in-cloud SO2 oxidation is much faster than predicted by S(IV) oxidation by molecular oxygen measured in bulk solutions.  相似文献   

2.
Despite the heterogeneous reaction of sulfur dioxide (SO2) on mineral dust particles significantly affects the atmospheric environment, the effect of acidic gases on the formation of sulfite and sulfate from this reaction is not particularly clear. In this work, using the in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique, we employed a mineral dust particle model (CaCO3) combined with NO2 and acetic acid to investigate their effects on the heterogeneous reaction of SO2 on CaCO3 particles. It was found that water vapor can promote the formation of sulfite and simulated radiation can facilitate the oxidation of sulfite to sulfate. The addition of NO2 or acetic acid to the reaction system altered the production of sulfate and sulfite accordingly. There was a synergistic effect between NO2 and SO2 that promoted the oxidation of sulfite to sulfate, and a competitive effect between acetic acid and SO2 that inhibited the formation of sulfite. Moreover, light and water vapor can also affect the heterogeneous reaction of SO2 with the coexistence of multiple gases. These findings improve our understanding of the effects of organic and inorganic gases and environmental factors on the formation of sulfite and sulfate in heterogeneous reactions.  相似文献   

3.
孙明  吴彦 《环境科学》2006,27(7):1282-1285
采用多针-板式电极,在70 m3/h烟气流量范围内,研究了水蒸气浓度、烟气流量、电场强度等因素对不饱和水蒸气正直流电晕放电烟气脱硫率的影响以及水蒸气电晕放电对脉冲放电烟气脱硫率的提高.研究结果表明,实验范围内,按照NH3∶SO2摩尔比为2∶1添加NH3的条件下,增加水蒸气流量、增强电场强度、减少烟气流量,烟气脱硫率能提高10%,达到60%左右.同时,水蒸气电晕放电能使脉冲放电的烟气脱硫率提高5%左右,达到90%以上.  相似文献   

4.
硫酸盐还原-氨氧化反应的特性研究   总被引:4,自引:3,他引:1  
袁怡  黄勇  李祥  张春蕾  张丽  潘杨  刘福鑫 《环境科学》2013,34(11):4362-4369
将接种的ANAMMOX污泥进行自养条件下的硫酸盐还原-氨氧化反应,实验发现硫酸盐还原-氨氧化反应是pH下降的过程,其产物为单质硫和氮气,NO-3-N是其中间产物.NH+4-N/SO2-4-S的转化比随着原水n(N)/n(S)比的减小而减小,其中原水n(N)/n(S)比对氨的转化率影响不大,低的n(N)/n(S)比可以提高SO2-4-S的转化率,但却使NH+4-N转化为NO-3-N的比率增大,导致n(TN)/n(TS)的去除比减小.这表明硫酸盐还原-氨氧化反应不是基元反应.硫酸盐能把氨氧化为NO-2-N或NO-3-N,其中转化为NO-3-N的反应是限速步骤,缩短反应时间有利于氮损失.  相似文献   

5.
硫酸盐/氨的厌氧生物转化试验研究   总被引:5,自引:5,他引:0  
张丽  黄勇  袁怡  李祥  刘福鑫 《环境科学》2013,34(11):4356-4361
采用厌氧上流式生物膜反应器,通过控制不同的水力停留时间、进水n(NH+4-N)/n(SO2-4-S)和HCO-3浓度研究了无机营养条件下硫酸盐/氨的厌氧生物转化特性.结果表明,反应器中NH+4和SO2-4发生了同步去除,最大NH+4-N和SO2-4-S去除速率分别为47.6 mg·(L·d)-1和16.9 mg·(L·d)-1,稳定去除率最高分别超过了80%和43%;反应过程中有NO-3-N的明显生成,出水NO-3-N浓度最大时为77.6 mg·L-1,整个过程中,未检测到S2-的生成,有单质硫附着在生物污泥表面;由于控制条件的不同,会产生不同的n(NH+4-N)/n(SO2-4-S)转化比,表明NH+4和SO2-4的厌氧生物反应并不是简单地接续反应,反应器中存在更为复杂的反应过程和转化途径.  相似文献   

6.
Sulfate, nitrate and ammonium(SNA) are the dominant species in secondary inorganic aerosol, and are considered an important factor in regional haze formation. Size-fractionated aerosol particles for a whole year were collected to study the size distribution of SNA as well as their chemical species in Shanghai. SNA mainly accumulated in fine particles and the highest average ratio of SNA to particulate matter(PM) was observed to be 47% in the fine size fraction(0.49–0.95 μm). Higher sulfur oxidation ratio and nitrogen oxidation ratio values were observed in PM of fine size less than 0.95 μm. Ion balance calculations indicated that more secondary sulfate and nitrate would be generated in PM of fine size(0.49–0.95 μm). Sulfur K-edge X-ray absorption near-edge structure(XANES) spectra of typical samples were analyzed. Results revealed that sulfur mainly existed as sulfate with a proportion(atomic basis) more than 73% in all size of PM and even higher at 90% in fine particles. Sulfate mainly existed as(NH4)2SO4 and gypsum in PM of Shanghai. Compared to non-haze days, a dramatic increase of(NH4)2SO4 content was found in fine particles on haze days only, which suggested the promoting impact of(NH4)2SO4 on haze formation. According to the result of air mass backward trajectory analysis, more(NH4)2SO4 would be generated during the periods of air mass stagnation. Based on XANES, analysis of sulfate species in size-fractionated aerosol particles can be an effective way to evaluate the impact of sulfate aerosols on regional haze formation.  相似文献   

7.
利用自制气溶胶反应器研究了NO_x和/或NH_3气氛下SO_2在高岭土表面的非均相转化过程,应用扫描电镜(SEM)对高岭土颗粒物形貌进行了表征.结果表明:高岭土颗粒表面的SO_2非均相转化致使其成分和形貌产生了较大变化.相同实验条件下,SO_2转化的协同作用程度由高到低依次为NH_3、NO_x/NH_3和NO_x气氛,相对湿度40%、有光照条件下,SO_2转化量增幅最高可分别达125%、75%和50%.所有气氛下,协同作用在无光照时在高相对湿度(40%~70%)区间更为突出,有光照时其显著性则体现在低相对湿度(20%~40%)区间.SO_2、NO_x、NH_3三者共存时,在高岭土颗粒表面发生的非均相反应过程既有协同作用又存在竞争反应.  相似文献   

8.
于2012年12月—2013年12月在广州城区(市站)和东部郊区(九龙)开展为期一年的PM2.5样品采集,并同步收集气象因子和气态污染物质量浓度等数据.结果表明,PM2.5中主要化学组分为有机质(OM)和硫酸盐(SO2-4),分别占市站和九龙PM2.5质量浓度的49.4%和15.2%及57.0%和17.3%.碳质气溶胶(OM和EC)贡献接近50%,二次无机气溶胶(SO2-4、NO-3和NH+4总和,SIA)贡献超过30%.由于以机动车尾气为代表的移动污染源在城市区域贡献较大,市站[NO-3]/[SO2-4]比值显著高于九龙.两个站点[NH+4]/[SO2-4]摩尔质量比均高于1.5,表明观测期间广州市干季大气处于富铵状态.市站和九龙站硫氧化率(SOR)和氮氧化率(NOR)的时空变化趋势与O3类似,表明大气光化学过程是影响广州市SOR和NOR的重要因素.相对湿度低于65%时,SOR和NOR均较高;温度对SOR和NOR的影响有显著的城郊差异.降雨对PM2.5及各化学组分浓度有显著去除作用.  相似文献   

9.
The concentrations of aerosols (NH4NO3, (NH4)2SO4 and NH4Cl) and of gases (HCl(g), HNO3(g), NH3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl(g) and HNO3(g) are observed. NH4Cl and NH4NO3 aerosols represent a major fraction of the Cl and NO3 aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO42− were found in small aerosols, which are attributed to the aqueous phase oxidation of SO2 under the influence of high pH due to the presence of NH3. Differences in SO42− concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO2(g) + SO42−. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.  相似文献   

10.
A laboratory-based atmospheric flow chamber, using realistic presentation rates of SO2, NO and NO2 pollutants directed to various dry and wetted surfaces, has been employed to quantify the effects of the individual pollutants and the role of ozone as an oxidant. For the individual pollutant gases reacting with stone surfaces coming to equilibrium with 84% relative humidity (r.h.), chemical reaction in the presence of a moisture film proceeds and the extent of this reaction is related to pollutant gas solubility in the moisture film, i.e. SO2 > NO2 > NO. After dissolution in the moisture film, the pollutant gases are oxidized in the presence of catalysts associated with the stones. The additional presence of ozone promotes oxidation of the pollutant gases and thus their reaction with the stones. For SO2 pollutant, oxidation in the gas phase is not significant compared with that in the moisture film, with enhanced oxidation in the presence of catalysts. Ozone increases oxidation of NO and NO2 pollutant gases in the gas phase and moisture film; however, the oxidation of SO2 in the moisture film is more significant than that of NO or NO2. Wetting of the stone surfaces, in the absence of ozone, reveals the consistently greatest chemical reaction with SO2 compared with NO and NO2, which is related to SO2 solubility, oxidation in the presence of catalysts and production of sulphuric acid. Generally similar behaviour is evident of NO and NO2, but NO shows a reduced extent of chemical reaction, implying that its oxidation in surface water, in the presence of catalytic species, is slow and hence the reactants are lost in the form of run-off. In the additional presence of ozone, the SO2 pollutant gas gives rise to enhanced chemical reaction, whereas both NO and NO2 show lower extents of chemical reaction than for the dry stones. This arises from the relatively slow conversion of N2O5 in the liquid phase to nitric acid, allowing loss of reactants in run-off.  相似文献   

11.
Meteorological and chemical conditions during the July 1988 Bermuda-area sampling appear to have been favorable for conversion of sulfur gases to particulate excess sulfate (XSO4). Observed average XSO4 and SO4 concentrations of 11 and 2.1 nmol m−3, respectively, at 15 m a.s.l. in the marine boundary layer (MBL) upwind of Bermuda, indicate that conversion of SO2 to XSO4, over and above homogeneous conversion, may be necessary to explain the > 5.0 average molar ratio of XSO4 to SO2. Given an observed cloud cover of <15% over the region and the <3 nmol m−3 SO3 concentrations observed by aircraft, heterogeneous conversion mechanisms, in addition to cloud conversion of SO2, are necessary to explain the observed 11 nmol XSO4 m−3.Aerosol water content, estimated as a function of particle size distribution plus consideration of SO2 mass transfer for the observed particle size distribution, shows that SO2 was rapidly transferred to the sea-salt aerosol particles. Assuming that aqueous-phase SO2 reaction kinetics within the high pH sea-salt aerosol water are controlled by O3 oxidation, and considering mass-transfer limitations, SO2 conversion to XSO4 in the sea-salt aerosol water occurred at rates of approximately 5% h−1 under the low SO2 concentration, Bermuda-area sampling conditions. All of the 2 nmol XSO4 m−3 associated with sea-salt aerosol particles during low-wind-speed, Bermuda-area sampling can be explained by this conversion mechanism. Higher wind speed, greater aerosol water content and higher SO2 concentration conditions over the North Atlantic are estimated to generate more than 4 nmol XSO4 m−3 by heterogeneous conversion of SO2 in sea-salt aerosol particles.  相似文献   

12.
土霉素结晶母液酸化水解过程的研究   总被引:8,自引:2,他引:6  
土霉素结晶母液是一类含高浓度有机物和氮的废水,反硝化电子供体相对不足,且含有多种生物抑制性物质.为了提高废水的可生化性、增加可利用反硝化电子供体的数量,利用厌氧污泥床对土霉素结晶母液进行了水解处理,并对反应的pH、COD、NH4+、和SO42--浓度等进行了考察.水解过程对COD的去除功能不强,在HRT1.5h~6.0h的条件下,COD去除率也仅从10%提高到16%.由于有机氮氨化和硫酸盐还原作用,酸化后废水的pH值增加.当HRT超过2h以后,SO42-基本上都被还原成S2-采用经过水解的废水进行批量实验,结果证明硝化速率和反硝化速率分别比未水解时提高90.9%和45.2%.  相似文献   

13.
氮、硫输入对河口湿地土壤有机碳矿化的实验研究   总被引:2,自引:1,他引:1  
通过室内培养实验,研究了氮、硫输入对闽江河口湿地土壤有机碳矿化和土壤理化性质的影响.结果表明:NH_4Cl(N1)、NH_4NO_3(N3)、K_2SO_4(S)和NH_4Cl+K_2SO_4(NS1)处理显著促进了湿地土壤有机碳矿化速率(p0.05),较对照分别提高了76.57%、60.09%、83.20%和52.59%,并且不同处理下土壤有机碳矿化速率均表现为随培养时间的增加而递减.氮、硫输入在不同时间对湿地土壤有机碳矿化的影响不尽一致,在前6 d各处理的促进作用最明显.湿地土壤有机碳累积矿化量在不同处理下均表现为随培养时间逐渐增加,其增长速率在培养初始阶段较快,而后逐渐减慢;不同培养时间有机碳累积矿化量在N1、N3、S和NS1处理下与对照处理间均存在显著差异(p0.05).短期培养结束后,N3、NS1处理显著增加了湿地土壤DOC含量(p0.05);N1、N3、NS1和NH_4NO_3+K_2SO_4(NS3)处理均显著增加了土壤NH_4~+-N含量(p0.05);KNO_3(N2)、N3、NS2和NS3处理均显著增加了土壤NO_3~--N含量(p0.05);S、NS1、NS2和NS3处理均显著增加了土壤SO_4~(2-)含量(p0.05).不同处理下湿地土壤Cl-、pH、EC具有微弱的波动变化特征,但在不同处理组间均不存在显著差异(p0.05).多元回归分析显示,DOC、NH_4~+-N和SO_4~(2-)是氮、硫输入处理下影响闽江河口湿地土壤有机碳矿化速率的主要控制因素.  相似文献   

14.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

15.
废水中硫酸盐生物还原技术研究   总被引:13,自引:0,他引:13  
在上流式厌氧污泥床中,利用硫酸盐还原菌还原青霉素生产废水中的SO42-, 当进水SO42-为 2.0 g/L,SO42-容积负荷为10 kg/(m3·d)时,SO42-去除率为76%。试验结果表明:COD/SO42-和容积负荷是影响SO42-还原效果的主要因素。   相似文献   

16.
采用中空纤维膜接触器(Hollow Fiber Membrane Contactor, HFMC)回收尿液中的氨氮,系统研究了吸收液类型(H3PO4、H2SO4和HNO3)对氨回收效能、水蒸气的跨膜通量和所获液体肥料的影响.结果表明,使用H2SO4作为吸收液时氨氮回收效能最优,其次是H3PO4和HNO3.当采用H2SO4为吸收液时,氨氮回收率、氨跨膜通量和传质系数分别为84.49%±0.01%、22.92 g·m-2·h-1和2.37×10-6 m·s-1.HNO3的挥发性使其从吸收液侧反向跨膜至料液侧,导致氨跨膜传质驱动力变小;此外,NH3和HNO3会在膜孔中反应并生成NH4NO3气溶胶,增加氨在膜孔中的传质阻力,导致氨氮的回收效能降低.对采用不同吸收液时膜两侧的水的活度差和理论水通量进行了计算,结果表明,随着氨氮的不断跨膜吸收,膜两侧的活度差和水通量逐渐增大,实验结束时水通量分别为7.44×10-2 kg·m-2·h-1(H3PO4)、9.06×10-2 kg·m-2·h-1(H2SO4)和2.00×10-2 kg·m-2·h-1(HNO3).肥料组分分析表明,以H2SO4和HNO3为吸收液可以获得仅含N素的单一液体肥料,以H3PO4作吸收液可获得N-P复合肥,(NH42HPO4和NH4H2PO4所占的比例分别为88.33%和11.67%.  相似文献   

17.
臭氧在冰晶及硫酸铵和亚硫酸铵渗溶冰晶上的粘着系数   总被引:3,自引:0,他引:3  
利用流动管式反应器,在220-260K温度范围内,实验测量了臭氧在低温冰晶及硫酸铵和亚硫酸铵渗溶冰晶表面上的粘着系数.结果表明:臭氧在低温冰晶表面上的粘着系数随温度升高而增大, 其粘着系数为1.3×10-7-2.7×10-6; 臭氧在硫酸铵和亚硫酸铵渗溶冰晶表面上的粘着系数与二者浓度呈非线性关系; 利用实验结果估算了臭氧在极地平流层云中存留寿命约为56d, 臭氧在主要组成为水的冰晶表面上的损耗不容忽视.  相似文献   

18.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   

19.
This paper addresses two hypothesis that try to explain the difference observed between the estimated NH3 emission levels in The Netherlands and those indicated by atmospheric measurements, the so called ‘ammonia gap’: the role of SO2 emissions regulating ambient NH3 concentrations through co-deposition, and long-term NH3 emissions after slurry injection. It was found that throughfall measurements of NH4+ could not be used as indicator for changes in NH3 emissions. The throughfall deposition of NH4+ is in close equilibrium to SO42− and NO3 and is thus regulated by the equilibrium of ambient NH3 and NH4+ in wet deposition and canopy water layers. When SO2 emissions decrease, the amount of available SO42− decreases, which imposes a limit on the deposition of (NH4)2SO4. Long-term emissions of NH3 after application of manure were monitored using a new technique, which continuously measures the concentration of NH3 in a cross-section of the emission plume downwind of the source. The emissions could be registered for 3 weeks after application of manure. The results indicate that the long-term emissions only contribute 1–2% to the total emission level. Both the effect of SO2 on the NH3 deposition levels and the long-term emission fluxes are not enough to explain the observed ammonia gap. It seems that several counteracting effects, some of them emerging from the new emission reduction regulations, contribute to the ammonia gap. An integrated approach to abate ammonia emissions is, therefore, needed. The implementation and regulation of production ceilings for reactive nitrogen might be a good option.  相似文献   

20.
针对含高浓度硫氰酸盐的废水/废液,采用高效的物化技术实现化学转化,避免生物过程因毒性抑制所需要的稀释作用,作为预处理工艺提供厌氧氨氧化的水质条件.以配制的硫氰酸盐模拟废水作为研究对象,采用自主搭建的脉冲电晕放电(PCD)装置,从构建厌氧氨氧化适配条件的目的出发,考察了不同pH条件下含氮污染物经PCD处理随时间的动态转化规律,以及SCN~--N降解副产物(SO_4~(2-)和HCO~-_3浓度)对NH~+_4-N降解的影响,并拟合了不同条件下NH~+_4-N的降解动力学.结果表明,PCD技术利用原位产生的O_3和·OH能氧化包括SCN~--N和NH~+_4-N在内的还原态含氮化合物为NO~-_3-N,pH的增高有利于氧化反应的进行;反应过程中产生的SO_4~(2-)和HCO~-_3对NH~+_4-N的氧化具有显著的抑制作用,HCO~-_3的抑制效应要高于SO_4~(2-).研究表明,对于高SCN~-废水的处理,PCD技术可作为厌氧氨氧化工艺的预处理技术,在规避毒性抑制与构造水质特征方面表现出优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号