首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A mathematical model of cloud chemistry was evaluated with the cloud chemistry data collected by Richardset al. (1983,Atmospheric Environment17, 911–914) from 1981 to 1985 in stratus clouds in the Los Angeles Basin. The model simulates atmospheric chemistry including gas-phase chemistry, aqueous-phase chemistry and droplet mass transfer, vertical transport, rainfall and turbulent diffusion.Evaluation of the model entailed two major part. First, the equilibrium chemistry is evaluated with a total of 52 case studies. Then, the model with treatment of cloud chemistry, vertical transport and diffusion is evaluated with two case studies. The results of the model simulations show the importance of vertical transport in determining the chemical composition of stratiform clouds.The sensitivity of sulfate, nitrate, ammonium and hydrogen ion concentrations to precursor levels, various chemical kinetic and cloud microphysical parameters and various environmental conditions is discussed.  相似文献   

2.
A Lagrangian trajectory model simulating the formation, transport and deposition of secondary organic aerosol is developed and applied to the Los Angeles area, for the air pollution episode of 27–28 August 1987. The predicted secondary organic aerosol on 28 August 1987 represents 15–22% of the measured particulate organic carbon at inland locations in the base case simulations, and 5–8% of that at coastal locations. A maximum secondary organic aerosol concentration of 6.8 μg m−3 is predicted for Claremont, CA, during this episode. On a daily average basis at Claremont about 46% of this secondary organic aerosol is predicted to be a result of the oxidation of non-toluene aromatics (xylenes, alkylbenzenes, etc.), 19% from toluene, 16% from biogenic hydrocarbons (α-pinene, ß-pinene, etc.), 15% from alkanes and 4% from alkenes. The major uncertainties in predicting secondary organic aerosol concentrations are the reactive organic gas emissions, the aerosol yields and the partitioning of the condensable gases between the two phases. Doubling the reactive organic gas (ROG) emissions results in an increase of the secondary organic aerosol predicted at Claremont by a factor of 2.3. Predicted secondary organic aerosol levels are less sensitive to changes in secondary organic aerosol deposition and NOx emissions than to ROG emissions.  相似文献   

3.
The distribution of acidity and solute concentration among the various droplet sizes in a fog or cloud and the effect of the evaporation-condensation cycle on the composition and size distribution of atmospheric aerosol is studied. Significant total solute concentration differences can occur in aqueous droplets inside a fog or cloud. For the fog simulated here, during the period of dense fog, the solute concentration in droplets larger than 10 μm diameter increased with size, in such a way that droplets of diameter 20 μm attain a solute concentration that is a factor of 3.6 larger than that in the 10 μm droplets. Droplets on which most of the liquid water condenses have access to most of the reacting medium for in situ S(IV) oxidation and are therefore preferentially enriched in sulfate. The gas and aqueous-phase chemical processes result in an increase of the total solute mass concentration nonuniform over the droplet spectrum for a mature fog. These chemical processes tend to decrease the total solute mass concentration differences among the various droplet sizes. Low cooling rates of the system also tend to decrease these concentration differences while high cooling rates have exactly the opposite effect. The mass/size distribution of the condensation nuclie influences quantitatively, but not qualitatively, the above concentration differences.  相似文献   

4.
A microphysical radiation fog model is coupled with a detailed chemistry module to simulate chemical reactions in the gas phase and in fog water during a radiation fog event. In the chemical part of the model the microphysical particle spectrum is subdivided into three size classes corresponding to non-activated aerosol particles, small and large fog droplets. Chemical reactions in the liquid phase are separately calculated in the small and in the large droplet size class. The impact of the chemical constitution of activated aerosols on fogwater chemistry is considered in the model simulations. The mass transfer of chemical species between the gas phase and the two liquid phases is treated in detail by solving the corresponding coupled differential equation system. The model also accounts for concentration changes of gas-phase and aqueous-phase chemical species which are induced by turbulence, gravitational settling and by evaporation/condensation processes.Numerical results demonstrate that fogwater chemistry is strongly controlled by dynamic processes, i.e. the vertical growth of the fog, turbulent mixing processes and the gravitational settling of the particles. The concentrations of aqueous-phase chemical species are different in the two droplet size classes. Reactands with lower water solubility are mainly found in the large droplet size class because the characteristic time for their mass transfer from the gas phase into the liquid phase is essentially longer than the characteristic time for the formation of large fog droplets. Species with high water solubility are rapidly transferred into the small fog droplets and are then washed out by wet deposition before these particles grow further to form large droplets. Thus, the concentrations of the major ions (NO3, NH4+) are much higher in small than in large droplets, yielding distinctly lower pH values of the small particles. In the present study the reaction of sulfur with H2O2 and the Fe(III)-catalysed autoxidation of S(IV) are the major S(VI) producing mechanisms in fog water. Most of the time the sulfur oxidation rates are higher in the large than in the small droplets. Fogwater deposition by gravitational settling occurs mainly in the large droplet size class. However, since in the small droplets the concentrations of chemical species with very good water solubility are relatively high, in both droplet size classes the total wet deposition of these reactands is of the same order of magnitude.  相似文献   

5.
Receptor modeling on ambient aerosol and air quality data collected at Duarte, CA (a residential site near Los Angeles), in 1983 and 1987–1988 was carried out. A significant change in the ambient concentrations of SO42−, Al, Si, Mn, Fe, Pb, Br, volatile and organic carbon and fine particle (FP) mass took place from 1983 to 1987–1988. A drastic reduction (∼80%) of the ambient Pb and Br concentrations took place as the lead content and the usage of leaded gasoline decreased in the Los Angeles Basin during that period. A day-of-the-week analysis indicated that both crustal (Si, Ca, Fe) and transportation (Pb, CO, organic carbon and black carbon) related pollutants exhibit significantly different concentrations between weekdays and weekends of 1987–1988. this indicates that loadings of suspended soil dust are more affected by anthropogenic activities than meteorological patterns. In contrast, sulfate and volatile carbon concentrations seem to be insensitive to that cycle indicating that other sources/processes can be responsible for the ambient levels of these pollutants. Principal component analysis of aerosol and air quality data showed that the major contributions to the variance of the ambient aerosol loadings come from soil, motor vehicles and sulfates.  相似文献   

6.
The Tagged Species Engineering Model (TSEM), a three-dimensional Eulerian model, has been developed to examine source-receptor relationships and the response of sulfate deposition to hypothetical control strategies for sulfur dioxide source emissions. Archived output files from a comprehensive Eulerian model (the Regional Acid Deposition Model) are used to provide necessary input values of ozone, hydrogen peroxide, hydroxyl and hydroperoxy radicals, and other oxidants. Sulfur dioxide is then oxidized to sulfate by both gas-phase and aqueous-phase reactions. Results from comparisons of the simplified model with the comprehensive model show that TSEM represents sulfate deposition very well both for base case emissions and for a hypothetical 50% reduction in all sulfur-emitting sources. Source-receptor relationships are exhibited by means of tagged sulfur emissions, as illustrated in two examples.  相似文献   

7.
The Greater Los Angeles Distant Impact Study is an ongoing program to investigate the fate of urban pollutants in the southwestern United States. As an initial phase of this program the source strengths of halocarbon emissions in the Los Angeles Basin were investigated. These inert compounds, emitted in large quantities by various industrial and commercial activities, offer an oppurtunity to routinely trace polluted air leaving the Basin.Results show widespread emissions of halocarbons with two areas of peak concentrations found in the western part of the Basin; however, the distribution of pollutants leaving the Basin indicates that considerable mixing has taken place. Diurnal halocarbon concentrations peak during the late evening at the eastern end of the Basin due to the prevailing westerly winds. Pollutants are transported out of the Basin in discrete episodes of about 14 h duration with the highest concentrations lasting for about 6 h.Surface and upper air meteorological measurements were used to determine the dynamic and thermodynamic structure of air leaving the Basin. Under the prevailing conditions of strong onshore flow, pollutants were transported out of the Basin in a shallow surface layer; above this, the flow reversed in a deep well-mixed layer containing elevated pollutant concentrations. This layer was capped by the planetary boundary layer inversion.Halocarbons appear to be very useful tracers of urban air in the southwestern United States.  相似文献   

8.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   

9.
用夜间雾的数值模式研究了高架源在雾形成前后的扩散特征。模拟结果表明,雾的出现影响了大气近地层结,使原来很稳定的大气变成不稳定大气,但雾顶以上仍是逆温状态,这样导致雾顶附近的高浓度污染物向地面输送加剧,造成地面污染。这种情况非常类似于日出后出现的地面熏烟。研究结果从大气扩散方面解释了近年来在雾天临测中发现的地面高浓度污染现象,说明雾天是造成地面严重污染的重要天气之一。  相似文献   

10.
美国洛杉矶空气管理经验分析   总被引:1,自引:0,他引:1  
过去35年间,洛杉矶的经济和人口持续增长、城市扩张,但是洛杉矶的空气污染水平得到了下降,在达到加利福利亚州和《清洁空气法》所规定的大气质量总体目标方面,有了长足的进步.期间起到重大作用的因素包括:①固定污染源和移动污染源气体污染物排放的控制技术和企业实践的巨大进步.②联邦、州和地区的清洁空气政策的发展.③强有力的专门负责清洁空气政策的监督和执行行政机构的设立.④公众压力.⑤从信任政府运用命令与控制手段到利用激励手段和市场手段完成许多政策目标(包括空气污染控制)的变革.同时,该地区的人口还在持续增长,经济继续繁荣扩张,意味着将产生更多的空气污染物,尤其是来自移动污染源的污染物.另外,在公众不太支持加强政府力量或增加税收的形势下,要求政策制定者解决空气污染的问题或大幅度改变洛杉矶居民的生活方式.  相似文献   

11.
2015年12月北京市空气重污染过程分析及污染源排放变化   总被引:5,自引:8,他引:5  
2015年12月,北京市及周边地区连续多次出现重污染天气.在此期间,北京市空气重污染应急指挥部两次发布红色预警.为厘清该月重污染的发生过程、生消变化,测算了应急措施下的污染源排放变化情况,并采用数值模拟和地面观测相结合的分析方法,对重污染的形成原因进行初步分析,同时对应急措施的环境效果进行评估.结果表明:1虽然2015年12月北京市主要大气污染物排放量较去年同期有所下降,但排放强度仍然较大,是重污染过程的内因;气象扩散条件不利是重要的外因,地面风速弱,大气稳定度高,相对湿度高,边界层高度降低,源排放及气象因素共同导致了此轮重污染过程.2红色预警应急措施可实现污染物日排放强度减少36%左右,PM2.5浓度下降11%~21%,预警的应急措施不能扭转重污染的态势,但对于缓解PM2.5污染加重趋势有明显的效果.3在重污染天气下,污染物仍在大气中累积,应急措施最明显的效果发生在实施后的48~72 h后,因此建议在PM2.5浓度快速上升前36~48 h实施减排措施,从而对空气质量预报准确性提出更高的要求.  相似文献   

12.
Concentrations of atmospheric H2O2 were measured in air, rain, cloud and dew samples in forested areas of the San Bernardino Mountains, southern California, from spring through fall of 1987–1990 O3 measurements in air were also conducted for comparison. Typical ranges of H2O2 concentrations measured were 1–3 ppb in air, 10–90 μM in rain and cloud water, and < μM in dew. The results show that gas-phase H2O2 concentrations were slightly higher at nighttime than at daytime or nearly constant throughout a 24-hr period, whereas O3 concentrations were highest during the afternoon, when polluted air masses from Los Angeles carried by daily sea breezes reached the mountain region. Afternoon concentrations of gaseous H2O2 and O3 in the mountain region were compared with those measured in Los Angeles urban sites to elucidate the regional variation of these oxidants. The results show that ambient concentrations of H2O2 and O3 were about 50–100% higher at the mountains sites than at the Los Angeles sites.  相似文献   

13.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

14.
Aerosol light absorption (babs) has been measured in real-time in Los Angeles with a validated photoacoustic technique, and its impact on visibility degradation has been examined. These measurements were collected during ten days in the summer of 1987 for the Southern California Air Quality Study (SCAQS). Aerosol babs (λ = 514.5 nm) varied from an hourly average value of 7 × 10−6 m−1 in the 3–4 and 4–5 a.m. periods of 13 July to 9 × 10−5 m−1 in the 7–8 a.m. period of both 28 August and 3 September. This babs, which is due solely to elemental carbon (EC) showed a distinct diurnal pattern with low values at night, increasing around sunrise to higher values through mid-afternoon. Comparison of these data with aerosol light scattering data clearly illustrates that the contribution of aerosol light absorption to visibility degradation increases in importance under less polluted conditions. Other urban and rural studies show similar results.  相似文献   

15.
在雾稳定的条件下,研究了雾滴穿过SO_2烟羽沉降到地面的过程中吸收、析解以及酸化等过程。结果表明,雾对烟羽中SO_2的清除具有某些奇特的现象。即仅在离源较远的区域才表现出有限的清除作用:而在近源区,主要以析解为主,使源附近地面SO_2浓度增加,高架源成了低架源。雾滴在地面附近的这种析解作用,是造成雾天污染物浓度高的重要原因之一。  相似文献   

16.
叙述了磺化法生产苯酚碱熔工段碱雾污染治理的技术措施 ,指出在原碱雾回收流程中的旋风分离器上部设置喷淋吸收装置 ,并采用 5 %~ 10 %的氢氧化钠碱液吸收碱雾 ,可取得明显的治理效果  相似文献   

17.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

18.
SO_2是北京大气中重要的污染气体.为探讨亚太经合组织(APEC)峰会前后北京大气SO_2的垂直分布及其对二次硫酸盐(SO_4~(2-))生成的影响,我们于2014年10月21日至11月30日在地面和北京325 m气象塔260 m高度处同步开展了气体SO_2和亚微米颗粒物中硫酸盐(SO_4~(2-))实时连续在线观测.结果显示,采暖前,北京地面SO_2浓度较低,但高层由于显著受到区域输送的影响浓度较高,两层污染物变化趋势也存在明显差异.采暖后,即APEC后,受本地供暖排放影响,SO_2和SO_4~(2-)浓度显著增加,两层的总体差异也相应减小,变化趋势也更为一致.湿度对SO_2的液相转化起关键作用.我们发现近地面SO_2的转化率(SOR)显著高于260 m,这主要与地面较高的湿度相关.事实上,SOR随着湿度增加而迅速增大,进一步凸显了湿度对SO_2液相氧化的影响.另外,我们也发现SO_2特别是260 m在低湿范围(RH40%)内随湿度增加而逐渐升高,但在高湿范围(RH50%)内则呈下降趋势,说明不同湿度范围内的来源或者生成机制可能有所不同.SO_4~(2-)和PM_(2.5)浓度均随着湿度的增加而增加,但不同湿度范围,增加速率不同.通过相关性和和后向轨迹分析表明,区域输送(特别是途经北京西部和南部的气团)和本地燃煤排放分别是采暖前后污染物的主要来源.  相似文献   

19.
为了解北京怀柔区夏季典型O3污染过程中初始VOCs(挥发性有机物)浓度(以φ计)的特征,识别其关键物种及主要来源,于2016年8月3-11日在中国科学院大学雁栖湖校区教学楼顶开展强化观测,利用光化学物种比值法和连续反应模型法测算观测期间大气初始φ(VOCs),采用MIR(最大增量反应活性)法估算初始VOCs的OFP(O3生成潜势),识别关键物种,并应用PMF(正交矩阵因子)模型对初始VOCs的来源进行解析.结果表明:北京怀柔区O3污染过程中初始φ(VOCs)平均值为25.27×10-9,如忽略化学损失,φ(VOCs)将被低估约18.6%.初始VOCs的总OFP值为144.6×10-9,VOCs物种对总OFP贡献率的顺序依次为醛酮类>烯烃>芳香烃>烷烃,异戊二烯、乙醛、己醛、间/对-二甲苯、甲苯、乙烯、丙烯、1,2,4-三甲苯、丁酮、1,3,5-三甲苯是怀柔区O3形成的关键活性物种.PMF解析结果显示,机动车尾气源对初始φ(VOCs)的贡献率(23.5%)最高,其次是溶剂使用源(18.3%)、植物排放源(18.1%)、工业过程源(17.6%)、生物质燃烧源(12.1%)和煤炭燃烧源(10.5%).研究显示,在北京怀柔区典型O3污染过程中,减少机动车尾气源、溶剂使用源、上风向工业过程源的排放是控制怀柔区VOCs的有效措施,而控制异戊二烯、乙醛、己醛、间/对-二甲苯、甲苯等关键活性物种则是有效抑制VOCs排放对O3生成贡献的重要手段.   相似文献   

20.
A thorough understanding of chemical composition, particle pH, and pollutant emissions is essential to address the climate and human health effects of atmospheric particles. In this study, we used a High-Resolution Time-of-Flight Aerosol Mass Spectrometer(HR-ToF-AMS)and Scanning Mobility Particle Sizer(SMPS) to characterize the composition of submicron particles. Moreover, we applied the ISORROPIA-II model to analyze the particle acidity effect on the compositional characterization of submicron ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号