首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
气态亚硝酸(HONO)容易光解,是对流层大气羟基自由基(·OH)的重要来源之一,对区域二次污染的形成具有重要作用.我国在大气HONO观测研究方面主要集中在一些城市区域,而在我国北方农村区域的研究还鲜见报道.为此,本文利用亚硝酸在线分析仪(long path absorption photo meter,LOPAP)于2017年11月在中国科学院农村环境研究站(河北省望都县东白陀村)开展了为期一个月的HONO外场观测,并分析了HONO的浓度水平、变化特征及收支情况.大气HONO的浓度在观测期间呈现夜间高、白天低的日变化特征,夜间最高浓度(体积分数,下同)可达约3. 70×10-9,中午最低浓度也维持在0. 10×10-9以上,表明农村区域存在比较强的HONO来源.采暖前后CO浓度显著提高,而HONO浓度无显著变化,说明供暖燃烧对HONO的贡献较小;夜间机动车直接排放在污染天气和清洁天气条件下对HONO的贡献分别为23. 20%和31. 20%,说明在污染天气条件下存在着某些较强的HONO源;夜间·OH与NO的均相反应HONO平均生成速率可高达0. 40×10-9h-1,比NO2的非均相反应HONO生成速率(0. 24×10-9h-1)高0. 67倍,是HONO的主要来源; HONO在白天存在着很强的未知源,其强度可达1. 37×10-9h-1,对于HONO的贡献达到50%左右.  相似文献   

2.
Effects of 2-h exposures to 0–1 μmol mol−1 SO2, NO2 and (1:1) SO2 + NO2 on CO2 uptake by standardized snap bean leaves were studied. Interactions resulting from pollutant-induced changes in leaf conductance were evaluated. Minimum exposure concentrations required to depress CO2 exchange rates (CER) under the test conditions were:0.17 μmol mol−1 SO2, 0.38 μmol mol−1 NO2, and 0.08 μmol mol−1 of each pollutant in the 1:1 mixture. Treatments with 1 μmol mol−1 NO2 reduced CER 10% without affecting leaf conductance. One μmol mol−1 SO2 depressed CER by 50%. Leaf conductances increased in SO2-treated leaves showing 30% inhibition of CER. Greater inhibition led to subsequent stomatal closure. Inhibition caused by the individual pollutants (applied singly) was linear over the range of concentrations investigated. The dual-pollutant mixture produced a synergistic response that was most pronounced at the lower pollutant concentrations. The potentiated effect was correlated with marked stomatal closure.Experimental plants for this study were grown under low moisture stress conditions to enhance stomatal opening in the plant stock material and reduce (damp) the potential for further SO2-induced stimulation of stomatal opening. The experiments were designed to obtain limiting data for the test conditions.  相似文献   

3.
Monthly mean chemical composition of aerosol with diameter less than 8 μm was identified in Sapporo in 1982. The mass of aerosol was made up of nine components: elemental C, organics, SO42−, NO3, NH4+, Cl, Na+, soil particles and water. The concentrations of carbonaceous particles (elemental C and organics) was relatively high (12.7–16.0μ m−3) in autumn and winter (October–February) due to emission from domestic heating and comprised 36–41% of total aerosol mass. Higher concentration of soil particles was observed in spring (March–May) (9.7–13.1 μg m−3) and comprised 22–29% of total aerosol mass due to suspension by strong wind. On the other hand, the concentration of excess SO42− (non-sea salt SO42−), which ranged from 2.6–5.2 μg m−3, did not change remarkably with season, and the fraction of excess sulfate increased to 21% in summer (July–August) probably due to photochemical transformation from SO2. Nitrate concentration was far less than that of SO42− throughout the year in Sapporo.  相似文献   

4.
As an important indoor pollutant, nitrous acid (HONO) can contribute to the concentration of indoor OH radicals by photolysis via sunlight penetrating into indoor environments, thus affecting the indoor oxidizing capability. In order to investigate the concentration of indoor HONO and its impact factors, three different indoor environments and two different locations in urban and suburban areas were selected to monitor indoor and outdoor pollutants simultaneously, including HONO, NO, NO2, nitrogen oxides (NOx), O3, and particle mass concentration. In general, the concentration of indoor HONO was higher than that outdoors. In the urban area, indoor HONO with high average concentration (7.10 ppbV) was well-correlated with the temperature. In the suburban area, the concentration of indoor HONO was only about 1-2 ppbV, and had a good correlation with indoor relative humidity. It was mainly attributed to the heterogeneous reaction of NO2 on indoor surfaces. The sunlight penetrating into indoor environments from outside had a great influence on the concentration of indoor HONO, leading to a concentration of indoor HONO close to that outdoors.  相似文献   

5.
Assessment of the effect of reduction in emissions of primary sources on eventual levels of pollutants, pH of precipitation and total wet deposition is crucial in designing acid-rain control strategies. The STEM-II/ASM model is used to investigate the effect of reduction in emissions on the ultimate deposition patterns and amounts of major acidic pollutants in a mesoscale region. This work also investigates the effect of background levels of primary pollutant species on the eventual levels and deposition amounts of SO4= and NO3. A series of mesoscale simulations were conducted in which emissions of primary sources of NOx and SO2 were reduced and/or background concentrations of certain key species were changed. The results indicate that the dominant effect on the eventual deposition amounts of SO4= and NO3 is due to background concentrations of key precursor species such as SOx and NOx. With relatively high background concentrations, reducing SO2 emissions by 50% and NOx emissions by 40% resulted in reductions of 2–3% for SO4= wet deposition aand about 15% for NO3 wet deposition. However, reducing the background concentrations of SO2 and SO4= by 50% and NO, NO2 and HNO3 by 40% resulted in substantial reductions in wet deposition; SO4= deposition was reduced by 40–50% and NO3 deposition was reduced by approximately 35%.  相似文献   

6.
Daily measurements the atmospheric cocnentrations of HNO3, NO3-, NO2, SO2, SO42−, NH4+, and several trace metals were made at the University of Michigan Biological Station over a 124-day period during the 1984–1985 winter. The composition of the daily precipitation was also determined. The relative contributions of scavenged NO3 and HNO3 to the precipitation was estimated by assuming that the NO3 scavenging ratio was the same as that of trace metals with a similar particle size. Similarly, the SO42− and SO2 contributions were based on the scavenging ratios of NH4+ and trace metals. On this basis, it was determined that the event median NO3 and HNO3 scavenging ratios were 500 and 3500, respectively. HNO3 scavenging accounted for 83% of the total scavenged NO3. Scavenging of SO42− accounted for all the snow SO42− in 67% of the events. In the remaining events, some SO2 was scavenged, with a median scavenging ratio of 219. Overall, 67% of the snowfall acidity appeared to be due to HNO3 scavenging. Backward air-mass trajectories that were calculated for each event were used to determine the general source regions of the acidic species. Snow associated with air masses from the south and west accounted for 81 and 75% of the deposited NO3 and SO42−, respectively.  相似文献   

7.
Estimates of external and internal sources of ions in net througfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The external source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3 during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42− doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42− in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s−1 and 0.13 cm s−1 for the deciduous and coniferous canopies, respectively, during the dormant seasons, and 0.30 cm s−1 and 0.43 cm s−1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3 and SO42−, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3 and SO42− accounted for 20–47 and 34–50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50–100 per cent and the method is subject to several assumptions and limitations.  相似文献   

8.
This study reports the diurnal patterns in the concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and total suspended particulate matter (TSP) in the urban atmosphere of Varanasi city in India during 1989. The city was divided into five zones and three monitoring stations were selected in each zone.Ambient concentrations of NO2 and SO2 were maximum during winter but ozone and TSP concentrations were highest during summer. The measured maximum concentrations (2-h average) were 150 and 231 μg m−3 (0.078 and 0.086 ppm) for NO2 and SO2, respectively, for the winter season. Ozone and TSP concentrations reached a maximum of 160 (0.08 ppm) and 733 μg m−3, respectively, in the summer. NO2 and SO2 concentrations peaked in the morning and evening. Peak concentrations of O3 occurred in the afternoon, generally between noon and 4 p.m. Maximum concentrations of O3, NO2, SO2 and TSP were measured in zones I and II, and minimum in zone V.  相似文献   

9.
The heterogeneous degradation of nitrogen dioxide (NO2) on five samples of natural Icelandic volcanic particles has been investigated. Laboratory experiments were carried out under simulated atmospheric conditions using a coated wall flow tube (CWFT). The CWFT reactor was coupled to a blue light nitrogen oxides analyzer (NOx analyzer), and a long path absorption photometer (LOPAP) to monitor in real time the concentrations of NO2, NO and HONO, respectively. Under dark and ambient relative humidity conditions, the steady state uptake coefficients of NO2 varied significantly between the volcanic samples probably due to differences in magma composition and morphological variation related with the density of surface OH groups. The irradiation of the surface with simulated sunlight enhanced the uptake coefficients by a factor of three indicating that photo-induced processes on the surface of the dust occur. Furthermore, the product yields of NO and HONO were determined under both dark and simulated sunlight conditions. The relative humidity was found to influence the distribution of gaseous products, promoting the formation of gaseous HONO. A detailed reaction mechanism is proposed that supports our experimental observations. Regarding the atmospheric implications, our results suggest that the NO2 degradation on volcanic particles and the corresponding formation of HONO is expected to be significant during volcanic dust storms or after a volcanic eruption.  相似文献   

10.
A laboratory-based atmospheric flow chamber, using realistic presentation rates of SO2, NO and NO2 pollutants directed to various dry and wetted surfaces, has been employed to quantify the effects of the individual pollutants and the role of ozone as an oxidant. For the individual pollutant gases reacting with stone surfaces coming to equilibrium with 84% relative humidity (r.h.), chemical reaction in the presence of a moisture film proceeds and the extent of this reaction is related to pollutant gas solubility in the moisture film, i.e. SO2 > NO2 > NO. After dissolution in the moisture film, the pollutant gases are oxidized in the presence of catalysts associated with the stones. The additional presence of ozone promotes oxidation of the pollutant gases and thus their reaction with the stones. For SO2 pollutant, oxidation in the gas phase is not significant compared with that in the moisture film, with enhanced oxidation in the presence of catalysts. Ozone increases oxidation of NO and NO2 pollutant gases in the gas phase and moisture film; however, the oxidation of SO2 in the moisture film is more significant than that of NO or NO2. Wetting of the stone surfaces, in the absence of ozone, reveals the consistently greatest chemical reaction with SO2 compared with NO and NO2, which is related to SO2 solubility, oxidation in the presence of catalysts and production of sulphuric acid. Generally similar behaviour is evident of NO and NO2, but NO shows a reduced extent of chemical reaction, implying that its oxidation in surface water, in the presence of catalytic species, is slow and hence the reactants are lost in the form of run-off. In the additional presence of ozone, the SO2 pollutant gas gives rise to enhanced chemical reaction, whereas both NO and NO2 show lower extents of chemical reaction than for the dry stones. This arises from the relatively slow conversion of N2O5 in the liquid phase to nitric acid, allowing loss of reactants in run-off.  相似文献   

11.
Precipitation chemistry data for the years 1982–1985 from 110 stations distributed across the continental U.S. and southern Ontario Province are used to describe the geographic distributions of SO42− and NO3 in precipitation. Volume-weighted, wet SO42− and NO3 concentrations, averaged over the 4 years of observation by season and annullly, show coherent patterns with maxima in the northeastern U.S. and southeastern Canada about ten times greater than the minima observed in the Intermountain and Pacific Northwest regions.Tests for empirical source-receptor relationships indicate that, in land areas with relatively low emissions of SO2 and NOx, the associations between wet SO42− concentrations and SO2 emissions and between wet NO3 concentrations and NOx emissions within 560 km of each precipitation chemistry station are weak or nonexistent (r2⩽0.42). The remaining land areas show moderate to strong associations between SO2 and SO42− and NOx and NO3 during the spring and summer, but only weak to nonexistent associations during the winter. The associations between emissions and concentrations, e.g. SO2 and SO42−, are equally well represented by either a linear or a power law function. However, at the level of aggregation employed, the data do not substantiate a linear-proportional relationship between concentrations and anthropogenic emissions. Furthermore, emissions of SO2 and NOx are highly correlated, as are the emissions of RHC and NOx.  相似文献   

12.
北京夏季大气HONO的监测研究   总被引:5,自引:2,他引:3  
在2007-08-14~2007-08-24期间,利用差分光学吸收光谱(DOAS)技术,对北京市大气中HONO、NO2和O3等污染物进行了连续监测,分析了HONO和NO2的日变化特征,讨论了夜间直接排放对HONO来源的贡献,进行了24 h和夜间13 h HONO非均相反应形成与黑碳气溶胶(BC)和相对湿度(RH)等要素的相关分析.结果表明,HONO和NO2均在01:00左右达到峰值,HONO的另一峰值浓度出现在06:00,比NO2第2个峰值出现时间07:00早1 h;夜间(19:00~次日07:00)直接排放对HONO的贡献最大达到31.3%,出现在20:00,平均贡献为15%;夜间HONOcorr/NO2比率与BC和RH具有非常明显的相关性,说明HONO的非均相生成速率与NO2的浓度以及反应介质BC表面的吸附水的浓度即RH成正比,得到夜间HONO平均转化率(HONO/NO2)为0.8%·h-1;而且RH的增加对HONO的非均相形成有利,但是当RH>80%对反应也将产生抑制作用,通过对监测期间的个例分析也证实了这一假设.  相似文献   

13.
An iterative least-squares method with a receptor model was applied to the analytical data of the precipitation samples collected at 23 points in the suburban area of Tokyo, and the number and composition of the source materials were determined. Thirty-nine monthly bulk precipitation samples were collected in the spring and summer of 1987 from the hilly and mountainous area of Tokyo and analyzed for Na+, K+, NH4+, Mg2+, Ca2+, F, Cl, Br, NO3 and SO42− by atomic absorption spectrometry and ion chromatography. The pH of the samples was also measured. A multivariate ion balance approach (Tsurumi, 1982, Anal. Chim. Acta138, 177–182) showed that the solutes in the precipitation were derived from just three major sources; sea salt, acid substance (a mixture of 53% HNO3, 39% H2SO4 and 8% HCl in equivalent) and CaSO4. The contributions of each source to the precipitation were calculated for every sampling site. Variations of the contributions with the distance from the coast were also discussed.  相似文献   

14.
基于碳捕集的富氧燃煤烟气联合脱硫脱硝试验研究   总被引:1,自引:0,他引:1  
富氧燃煤烟气压缩液化CO2的高压低温工况为NO氧化为易溶于水的NO2提供了十分有利的条件.基于小型高压吸收试验装置,采用配制的富氧燃煤模拟烟气,在高压常温下进行了NO、SO2、O2与H2O的吸收反应试验.根据反应前后的气液产物分析,测定了不同组分比例与不同压力下混合气体中NO与SO2的转化率.NO氧化与吸收试验表明,NO转化为HNO3的比率随压力升高而增加,在0.5 ~2 MPa之间增加很快,在2 ~3 MPa之间增速趋丁平缓,压力达3 MPa以上时,90%以上的NO均转化为稀硝酸,且初始NO浓度越高,NO的转化率越大.混合气体中同时存在5O2与NO的联合吸收试验发现,只有少量的NO转化成了NO3-,SO2向H2SO4的转化率随压力升高而增加,初始SO2浓度越大,转化率越高.分析表明,SO2与NO同时存在时SO2先行转化为SO3,NO充当了催化剂,但SO2转化为SO3的一次转化率小于35%,反应酸液产物的多次循环能使SO2的转化率达到90%以上.建议的工艺流程中需采用两座吸收反应塔顺序脱除SO2与NO并回收稀酸溶液,有望在富氧燃煤发电捕集CO2系统中降低脱硫脱硝成本,部分地弥补富氧燃烧机组发电成本的增加.  相似文献   

15.
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

16.
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42−) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3) were observed in winter and spring. The mass concentrations of Cl and K+ were higher in winter. Moreover, NO3 increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.  相似文献   

17.
Results of modelled and observed deposition velocities (Vd) for O3, SO2 and NO2 for time-averaged diurnal cycles and sometimes for a collection of hourly values taken from different days are discussed for different seasons. From the observations, it was found that the O3Vd values over a deciduous forest had a daytime representative value of 1.0 cm s−1 in the summer and 0.3 cm s−1 in the winter. For SO2 over the same forest and over a carrot field the daytime values ranged from 0.0 to 0.65 cm s−1 in the autumn, and for SO2 over a snow surface the Vd ranged from 0.0 to 0.15 cm s−1. The NO2Vd was mostly negative over the forest and the carrot field in the autumn and had a range of 0.0-0.15 cm s−1 over snow. From the model, it was found that for the three seasons the Vd values over all the land-use types were much larger than the observations. The model could not simulate the observed negative values of the NO2Vd. The impact of the Vd model and its modified version on the concentrations of O3 and SO2 were tested with a comprehensive Eulerian air quality model.  相似文献   

18.
Measurements of HONO and HNO3 have been made using annular denuder samplers at sites in south-east England. Whilst concentrations of HNO3 exhibited a diurnal variation, with a maximum in mid-afternoon nitrous acid shows the opposite diurnal cycle with maximum levels at night due to daytime photolysis. Concentrations of HONO increase with those of NO2, and elevated nighttime HONO level appear to be followed by high levels of HNO3 the following day. Average concentrations of HONO (0.45± 0.26 ppb in 24 h samples are comparable to those of HNO3 (0.56±0.36 ppb in 24 h samples), each representing about 5–10% of the concentration of NO2. Although NO2 oxidation provides the source of HNO3 concentrations of the two compounds are not related, presumably since the formation of NH4NO3 aerosol limits HNO3 concentrations at out site.  相似文献   

19.
利用密度泛函理论系统研究了SO_2对活性炭吸附单质铅(Pb~0)的影响,其中,结构优化与频率计算采用B3LYP/def2-SVP级别方法和基组,单点能计算采用B3LYP/def2-TZVP级别方法和基组.同时,利用玻尔兹曼分布函数分析了SO_2与Pb~0在活性炭表面的竞争吸附关系,结果表明,Pb~0在纯净活性炭上的吸附能力大于SO_2.此外,本研究发现,SO_2的预吸附会增强活性炭对Pb~0的吸附效果.通过静电势分布揭开了SO_2促进活性炭吸附Pb~0的深层原因,结果发现,吸附SO_2以后活性炭表面静电势极大值增大,极小值减小,吸附剂吸附能力因此增强.最后,利用电子密度差分图揭示出SO_2改性活性炭在吸附Pb~0时,SO_2对Pb~0吸附的影响可以分为直接影响和间接影响两种.  相似文献   

20.
The precipitation chemistry of Greater Manchester, a Metropolitan County in the northwest of England, has been examined for small scale spatial variability using a network of 18 bulk precipitation collectors. Significant spatial variability was found for concentrations of non-marine SO42−, NO3, NH4+, Ca2+ and H+ ions. The statistical associations between the data were investigated using correlation, partial correlation and principal components analyses. It was found that zero-order correlation coefficients were inadequate for the interpretation of the data and that the computation of first, and higher order partial correlation coefficients was necessary in order to explain the interrelationships between the data and their spatial variability. The statistical associations between the data suggest relationships between Ca2+ and non-marine SO42−, and NO3+ in precipitation which are discussed in terms of their possible precursor species. Potential source effects were examined in conjunction with atmospheric removal processes. The dry deposition of SO4 particles, rather than the dry deposition of SO2, may explain the spatial variability of non-marine SO42−. The erosion of CaSO4 formed from the reaction of SO2 with CaCO3 on urban surfaces with subsequent resuspension is thought to be the basis of the relationship between Ca2+ and non-marine SO42− concentrations in precipitation. The wet and dry deposition of CaCO3 particles from local sources may be partially responsible for the spatial variability of H+, and dry deposition and scavenging of NH3, in conjunction with the predominant wind direction may explain the spatial variability of NO3 and NH4+ ions. Ammonia is thought to originate from sources both outside the study area and within it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号