首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
BiologicaleffectsofindoorsunlightinruraldwelinghousesChenGuifu,QiuShicong(WannanMedicalCollege,Wuhu241001,China)Biologicaleff...  相似文献   

2.
The effects of indoor radon decay product behavior on overall concentrations have generally been characterized using uniformly-mixed models, mathematical formulations based on steady-state macroscopic mass-balances, assuming uniform concentrations within the enclosure. The uniformly-mixed model parameterizes the deposition process as a constant volumetric removal rate, given different values for the free and attached progeny. The model requires prior knowledge of the deposition rates, and assumes them to be constant, independent of environmental conditions, and identical for all decay products. There has generally been little agreement regarding the actual values of the deposition rates, and the uncertainty in these required values presents an important limitation.In response to the limitations of existing mass-balance models, an indoor radon mass-transport model, RADTRAN, was developed using a microscopic mass-balance. Deposition by molecular diffusion is accounted for through boundary conditions, and deposition velocity is calculated based on the concentration distribution near the wall. Parametric sensitivity studies using RADTRAN examined the sensitivity of the deposition of radon decay products to several factors: the size of the free progeny (measured by its diffusivity, Df), particle concentration (using the attachment rate, X), and air motion. Deposition is described in terms of the deposition velocities of the free and attached progeny, uf and ua. The development of RADTRAN is described in a companion paper. This paper presents the results of the parametric sensitivity studies examining the influence of environmental conditions on radon progeny deposition. Results primarily focus on the influence on the free mode of the first radon decay product, 218Po. RADTRAN is also used to examine the variations of deposition velocity between the decay products.  相似文献   

3.
Commonly used mathematical models of indoor radon decay product behavior are based on macroscopic mass-balances, often referred to as ‘uniformly-mixed models’. The uniformly-mixed model's applicability is limited by its inability to track the movement of pollutants from their sources to other areas within the enclosure, to permit spatial- or time-dependent sources, or to take proper account of interactions with macroscopic surfaces. Although the uniformly-mixed model parameterizes the deposition process as a constant volumetric removal rate, in reality the deposition process is actually a surface phenomenon and is strongly affected by environmental conditions.This paper describes the development of RADTRAN, a two-dimensional radon progeny transport model that begins with the differential conservation equations describing the motion of air and the transport of reactive pollutants, introduces appropriate boundary conditions to represent surface deposition, and then calculates the concentration distribution of radon progeny throughout the entire region of interest. Knowing the concentration gradient near the surface, a local mass-transfer coefficient (the deposition velocity) can be determined as a function of environmental conditions. RADTRAN simulations have been based on several flow conditions: buoyancy-driven recirculating enclosure flows, free and forced-convection boundary layer flows, and one-dimensional diffusion. Free progeny diffusivity, Df, and attachment rate, X, were varied over representative ranges. For these conditions, RADTRAN calculated free deposition velocities of uf = 0.014–0.079 cm s−1, for 218Po. RADTRAN predictions are compared to a range of experimental measurements. It was found that the predicted range of deposition velocities is in rough agreement with findings from experiments conducted in flow conditions similar to the simplified flows used in RADTRAN.  相似文献   

4.
Air pollutants can potentially lead to nitration of allergic proteins, thus promoting sensitization of these allergens. However, little is currently known about the nitration status of house dust mite(HDM) allergens. We identified the occurrence of nitrated products of two major HDM allergens Der f 1 and Der p 1 in dust samples collected from college dormitories in eastern China and assessed their associated health risk. The results showed that both non-nitrated and nitrated forms of the two all...  相似文献   

5.
6.
正The First Workshop on Indoor Air Pollution and Control was held in Kumamoto,Japan,and its success was due in large measure to the efforts of the local host Prof.Daizhou Zhang from Prefectural University of Kumamoto and his students.The workshop was sponsored by the China Association of Aerosol Science and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号