首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile weakfish, Cynoscion regalis (Bloch and Schneider, 1801), exhibit significant spatial diffrences in growth rate and condition factor among estuarine nursery zones in Delaware Bay. The potential influence of temperature and salinity on the suitability of estuarine nursery areas for juvenile weakfish was investigated in laboratory experiments by measuring ad libitum feeding rate, growth rate and gross growth efficiency of juveniles collected in Delaware Bay in 1990 (40 to 50 mm standard length; 1.4 to 2.1 g) in 12 temperature/salinity treatments (temperatures: 20, 24, 28°C; salinities: 5, 12, 19, 26 ppt) representing conditions encountered in different estuarine zones during spring/summer. Feeding rates (FR) increased significantly with temperature at all salinities, ranging from 10 to 15% body wt d-1 at 20°C to 33–39% body wt d-1 at 28°C. Specific growth rates (SGR) ranged from 1.4 to 9.4% body wt d-1 (0.3 to 1.5 mm d-1) and gross growth efficiencies (K 1) varied from 13.6 to 26.4% across temperature/salinity combinations. Based on nonlinear multiple regression models, predicted optimal temperatures for SGR and K 1 were 29 and 27°C, respectively. Salinity effects on SGR and K 1 were significant at 24 and 28°C where predicted optimal salinity was 20 ppt. At these warmer temperatures, SGR and K 1 were significantly lower at 5 than at 19 ppt despite higher FR at 5 ppt. Therefore, maximum growth rate and growth efficiency occurred under conditions characteristic of mesohaline nurseries. This finding is consistent with spatial patterns of growth in Delaware Bay, implying that physicochemical gradients influence the value of particular estuarine zones as nurseries for juvenile weakfish by affecting the energetics of feeding and growth. Laboratory results indicate a seasonal shift in the location of physiologically optimal nurseries within estuaries. During late spring/early summer, warmer temperatures in oligohaline areas permit higher feeding rate and faster growth compared to mesohaline areas. By mid-late summer, spatial temperature gradients diminish and mesohaline areas provide more suitable physicochemical conditions for growth rate and growth efficiency whereas oligohaline areas become energetically stressful. Substantial mortality occurred at 5 ppt and 28°C, providing additional evidence that oligohaline conditions are stressful during late summer. Furthermore, juveniles provided a choice among salinities in laboratory trials preferred those salinities which promoted higher growth rates. The extensive use of oligohaline nurseries by juvenile weakfish despite the potential for reduced growth rate and growth efficiency suggests this estuarine zone may provide a substantial refuge from predation.  相似文献   

2.
We tested the effects of osmotic stress on survival, developmental rate, and level of HSPs on American horseshoe crab (Limulus polyphemus) embryos. Animals were maintained in the laboratory at an ambient salinity of 20 ppt and then exposed to 4-h osmotic shocks at salinities of 10, 30, 40, 50, and 60 ppt, with a control group at 20 ppt. Horseshoe crab embryos had 100% developmental success (defined as individuals reaching the first instar or trilobite larval stage) at all salinities. However, osmotic stresses, especially hyperosmotic conditions, slowed the rate of development. Embryos subjected to osmotic stress showed higher levels of HSP70 and HSP90 than control animals kept at a salinity of 20 ppt. HSPs are of value to horseshoe crab embryos in surviving the fluctuating salinities that are typical of estuarine beach habitats.  相似文献   

3.
The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide effects. In the fluctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of “naive” cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these “home” conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically affect this species.  相似文献   

4.
The rotifer Brachionus plicatilis is euryhaline (growing between 2 and 97 ppt) and has previously been considered an osmoconformer. We suggest that B. plicatilis is an osmoregulator, exhibiting a pattern of Na+/K+ ATPase activity in response to salinity consistent with that of other osmoregulating euryhaline invertebrates. To examine salinity tolerance, growth rates between 5 and 60 ppt were determined. The activity of Na+/K+ ATPase was examined, over the same range of salinities, by measuring ATPase activity in rotifer homogenates in the presence and absence of a Na+/K+ ATPase inhibitor. Maximum specific growth rate (0.95 day–1) occurred at 16 ppt, highest mean amictic eggs per female (1.41) occurred at 20 ppt, and both parameters decreased rapidly as salinity increased. Egg development time was constant with salinity at 0.92 days. The activity of Na+/K+ ATPase per milligram protein increased from 3.9 µmol h–1 at 5 ppt to 6.8 µmol h–1 at 50 ppt and accounted for 15 and 30% of total ATPase activity, respectively. We suggest that these observations are consistent with increasing stress at high salinities and the occurrence of a hypo-osmoregulatory response. Given the high ATP consumption of Na+/K+ ATPase at high salinities, it is possible that a proportion of the corresponding decreases in growth rate and egg production are a direct cost of regulation.Communicated by J.P. Thorpe, Port Erin  相似文献   

5.
This study measured the progression from pelagic larvae to juvenile barnacles, and examined whether recruitment of barnacles, Semibalanus balanoides Linnaeus, at two intertidal sites in contrasting hydrodynamic regimes was determined by pre-settlement or post-settlement processes. The two sites were 1.5 km apart in the vicinity of Woods Hole, Mass., USA. Quantitative plankton samples were taken twice weekly from December 1997 to May 1998 at a nearby site as an estimate of nearshore larval abundance. The presence of S. balanoides nauplii was noted, and cyprids were enumerated and measured. Larval settlement at the two sites [Gansett Point, Buzzards Bay (GP) and Little Harbor, Vineyard Sound (LH)] was estimated from examination of replicate settlement plates exposed for 2 or 3 days throughout the settlement season, and from replicate plots on marked rock quadrats at each site. On both plates and rocks settled cyprids and metamorphs were enumerated. Space occupancy on unmanipulated rock quadrats by all stages from cyprids to adult barnacles was also examined. Settlement occurred from 2 January to 20 May, and major settlement peaks coincided with peaks in pelagic cyprid concentration at LH, but not at GP. Space occupied by juvenile barnacles was close to zero up until late February despite substantial settlement prior to that. At LH, juvenile barnacle cover was zero at the end of the observations; all settlement failed. Almost 100% of settled cyprids failed to metamorphose within 2 days from late January to late March. Then the proportion metamorphosing increased sharply coinciding with a sudden increase of 3°C in water temperature. Observed site differences in space occupancy by juvenile barnacles suggest that while cyprid supply is a necessary condition for barnacle settlement, other factors affecting metamorphosis of settled cyprids and early juvenile mortality determine recruitment.  相似文献   

6.
Competent cyprid larvae of the barnacle Balanus amphitrite Darwin were prevented from metamorphosing in the laboratory for 3 or 5 d using three different techniques (holding at low temperature, crowding, and detaining on a silanized surface). We then assessed the effects of prolonging larval life on post-metamorphic growth and survival, in comparison with control individuals that metamorphosed soon after they were competent to do so. Seven experiments were conducted over 2 yr (July 1987 to September 1989). In all experiments (each with six replicates per treatment), postponing larval metamorphosis for 3 or 5 d dramatically depressed postmetamorphic growth rate (P<0.05), although metamorphic success and post-metamorphic survival were not affected (P>0.10). The results suggest that B. amphitrite cyprids deferring their metamorphosis in the field may be less successful in competing for space, at least during the first few weeks of postlarval life.  相似文献   

7.
We studied the early life history of diadromous gobies in Dominica, West Indies, from May 1989 to May 1991, emphasising Sicydium punctatum Perugia. The transition of newly hatched larvae from upriver nest sites to the sea was studied in laboratory experiments. Newly hatched larvae are negatively buoyant but avoid settling to the bottom by active swimming during drift to the sea. Laboratory experiments evaluated salinity preferences and effects on swimming endurance. Larvae in haloclines actively selected low to intermediate salinities. Initially (0 to 5-d post-hatch), larvae minimized exposure to salinities >10 ppt, but later (5 to 8-d) occupied increasingly saline water. Larvae in no-choice freshwater or seawater treatments ceased activity at 4 to 5 d, but in haloclines larvae remained active up to 8 d post-hatch. Salinities <10 ppt are important for early survival of sicydiine gobies. Implications for larval survival and transport are discussed.  相似文献   

8.
Female mud crabs, Rhithropanopeus harrisii, carrying newly extruded eggs, were collected from the Petaluma River (San Francisco Bay Estuarine System, California, USA) in summer 1985, and exposed to factorial combinations of temperature (20°, 25° or 30°C) and salinity (2, 5, 15, 25, or 32%.). Upon hatching, dry weights of 12 to 15 h-old zoeae were determined. Subgroups of the remaining zoeae were transferred from hatching salinities to the salinities listed above and raised until metamorphosis to megalopa. Low salinities reduced zoeal dry weights by as much as 25%. Temperature played a secondary role in reduction of hatching weight of zoeae. Survival of larvae through zoeal development was best when hatching and rearing salinities were the same; in this case, overall survival increased with temperature. Both duration of zoeal development and megalopal dry weights were strongly influenced by temperature and rearing salinity, with only a small contribution from hatching salinity. The influence of hatching salinity was most obvious at extremes of the range tested. These studies indicate that physical conditions during embryogenesis profoundly influence subsequent larval development. Interpretation of experimental approaches to study ecophysiological adaptations of larval stages should not neglect the role of physical conditions during embryogenesis.  相似文献   

9.
Survival and growth over an environmental range of temperature and salinities were examined in order to help assess the importance of these environmental factors in affecting the distribution, abundance and survival of larvae and provide greater understanding of factors affecting fluctuations in adult Pandalus jordani Rathbun population sizes. Larvae were shown to have a wide tolerance to salinity, especially in the early stages, but a relatively narrow tolerance to temperature. The optimal temperatures for survival, 8° to 11°C, were also optimal for growth as reflected by maximal growth increments and body size. It is therefore felt that fluctuations in temperature as seen within and between successive larval seasons would have profound effects on larval survival, growth rates and size at metamorphosis to the benthic juvenile phase.  相似文献   

10.
Egg mortality of Baltic cod (Gadus morhua L.), collected off northern Gotland, Sweden, in 1990, was studied in four different salinities — 10 and 15 ppt (salinity of the principal spawning areas of Baltic cod) and 5 and 7 ppt (salinity above the halocline) — in laboratory experiments. Mortality was high during the first 4 d of development, but after gastrulation mortality was low in all salinities tested, except for 5 ppt, in which mortality increased slightly before hatching. Mortality during hatching varied considerably with salinity. No hatching occurred in 5 ppt salinity, and only a few larvae survived in 7 ppt salinity; in contrast, mortality during hatching was comparatively low in salinities of 10 and 15 ppt.  相似文献   

11.
Temperature and salinity are important environmental factors affecting the normal functioning of marine animals, particularly animals such as sea urchins living in shallow waters and tide pools. Here, we evaluated the effect of different combinations of temperature and salinity on early embryos of the endemic New Zealand sea urchin Evechinus chloroticus. Animals were collected at Matheson’s Bay (36º18′17′′S; 174º47′51′′E) in north-eastern New Zealand in February 2013. Embryos were exposed to five salinities (29, 31, 34, 35 and 37 ppt) and two temperatures (18 and 21 °C) during the first 24 h of development. Low salinity (29 ppt) affected all parameters (fertilization, development rate, gastrulation and normal development), with ca. 50 % of embryos surviving at 29 ppt, whereas seawater temperature only affected development rate and gastrulation. An increase in temperature from 18 to 21 °C minimized the negative effect of low salinity (≤31 ppt) on development rate and gastrulation of E. chloroticus. Overall, the results of this study suggest that early embryos of E. chloroticus have developmental plasticity to withstand reductions in salinity up to 29 ppt; however, it is still unknown whether the surviving embryos will be able to complete larval development at low salinities, particularly whether the embryos and larvae are carried into extreme environments such as estuaries where salinity is even lower. Multistressor studies are very important for climate change research as multiple environmental factors will act together in the wild, having major consequences for development and recruitment of marine invertebrates.  相似文献   

12.
Lipophilic inducers of larval settlement and metamorphosis of Pseudocentrotus depressus and Anthocidaris crassispina, two commercially important sea urchin species in Japan, were isolated from the foliose coralline red alga Corallina pilulifera (collected in 1990 near Saga, Japan) and identified. Larval assays of the fractions obtained by silica gel column chromatography of the total lipids showed that non-polar groups of lipids were effective at inducing larval settlement and metamorphosis. The effective fractions were further subjected to gel filtration (Sephadex LH-20) and also to silica gel column chromatography, and the effective components isolated as single spots by thin-layer chromatography. The components at a concentration of ca. 0.4 mg paper-1 (sample was adsorbed on a paper with 20 cm2) induced high rates of larval settlement of both P. depressus and A. crassispina. Chemical analyses of the components revealed a mixture of free fatty acids (FFAs), dominated by eicosapentaenoic acid (20:5, 41 to 50%), palmitic acid (16:0, 11 to 17%), arachidonic acid (20:4, 9 to 15%), and palmitoleic acid (16:1, 4 to 5%). In assays with the four standard FFAs, only 20:4 and 20:5 induced larval settlement and metamorphosis of the two species, while 16:0 and 16:1 were ineffective. The larvae underwent significant rates of settlement and metamorphosis in response to the two former FFAs at levels as low as 0.18 mg paper-1. Amongst the free fatty acid components of the alga, 20:5 was isolated as the chemical inducer of larval settlement and metamorphosis of the sea urchins in the laboratory.  相似文献   

13.
This study investigated the response of cyprids of the barnacle Amphibalanus amphitrite to 23 strains of laboratory cultured periphytic diatoms isolated from microbial biofilms that formed on glass slides immersed in Tachibana bay, Nagasaki, and those from mass-production tanks in the Fisheries Center of Nagasaki City, Japan. In addition, periphytic diatoms were subjected to various treatments, in order to investigate the nature of the chemical cue in periphytic diatoms. Cyprids of A. amphitrite responded differently to the 23 different periphytic diatom strains and settled in high percentages on Cocconeis sp. and Navicula ramosissima strain A. On the other hand, nine strains of diatoms significantly inhibited settlement. The settlement inducing activity of N. ramosissima strain A increased linearly with diatom density, and its activity was enhanced by culturing the diatom under a bacteria-free condition, suggesting that specific diatom species, i.e., N. ramosissima strain A, may play an important role on larval settlement of the barnacle. Subjecting N. ramosissima strain A biofilm to hydrochloric acid (HCl) and ethanol (EtOH) treatments or heating it at 100°C did not inactivate the film, indicating that the settlement cue was a stable surface bound compound that did not decompose from the above treatments. Moreover, of the various lectins, enzymes, and drugs [H5IO6 and sodium dodecyl sulfate or (SDS)] used, only Lentil Agglutinin (LCA) treatment of N. ramosissima strain A biofilm resulted in the reduction its settlement inducing activity. A positive correlation was observed between the settlement inducing activity and the amount of LCA conjugated fluorescein isothiocyanate (FITC-LCA) of N. ramosissima strain A. On the other hand, subjecting biofilms of N. ramosissima strain B, an inactive strain, to various types of treatments resulted in the induction of A. amphitrite larval settlement but LCA treatment also reduced the activity of these treated N. ramosissima strain B biofilms. These findings suggest that a cue containing an LCA-binding sugar chain is present in both A and B strains of N. ramosissima but the large amount of mucous substance covering N. ramosissima strain B biofilm probably makes the sugar chain containing active subunit in strain B unavailable to A. amphitrite cyprids. In conclusion, periphytic diatoms such as N. ramosissima play an important role in larval settlement of the barnacle A. amphitrite. The cue in the diatom was an LCA-binding sugar chain(s) compound that may have similarities to the settlement inducing protein complex (SIPC) from adult shell of the barnacle.  相似文献   

14.
J.-C. Chen  J.-L. Lin 《Marine Biology》1994,120(1):115-121
Hemolymph osmolality and tissue water of laboratory-reared Penaeus chinensis Osbeck juveniles (0.83 to 1.86 g) were investigated, after they had been transferred individually from 10, 20, 30 and 40 ppt to 10, 20, 30 and 40 ppt for 0.25, 0.5, 1, 2, 5 and 10 d, respectively. Hemolymph osmolality and tissue water of shrimp were stablilized within 5 d after they had been subjected to a sudden change in salinity from each salinity level. Hemolymph osmolality had a positively linear relationship with medium osmolality. Tissue water decreased with increased medium osmolality, and decreased with increased hemolymph osmolality. The mean (SD) isosmotic point was 703 (8) mOsm kg–1 which is equivalent to 24.2 (1.0) ppt. P. chinensis juveniles exhibited hyperosmotic regulation in salinities below isosmotic value, and hypoosmotic regulation in those above. The shrimp originally adapted to high salinity levels (30 and 40 ppt) showed less fluctuation of tissue water than those adapted to low salinity levels (10 and 20 ppt) when they were subjected to a sudden change in salinity.  相似文献   

15.
Larval survival and developmental rates of Lytechinus variegatus (Lamarck) were determined as a function of temperature and salinity in two experiments by: (1) directly transferring fertilized eggs to 35, 30, 27.5, 25, 20, 15, and 10S seawater at 18 and 23°C, and (2) acclimation of adult sea urchins to the conditions described above for 1 to 4 wk prior to spawning. Developmental rates and percent survival of larvae prior to metamorphosis decreased at salinities below 35 (Q10 values for metamorphosis=0.380 to 0.384). Temperature and salinity significantly (P<0.05) affected metabolic rates of L. variegatus plutei. These results show that L. variegatus larvae are stenohaline when compared to larvae of other echinoderm species. LC50 values (S), developmental rates, and survival to metamorphosis indicate that acclimation of adult sea urchins to lower salinity prior to spawing and fertilization does not enhance development or survival of embryos exposed to low salinity.  相似文献   

16.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

17.
Changes in salinity affect the metabolic rate of the sympagic amphipodOnisimus glacialis collected from the Barents Sea in 1986 and 1988. When transferred from 35 to 5 ppt S, oxygen consumption and ammonia excretion both increase three-fold during the first 5 h of exposure, and they remain high throughout the rest of the experimental period (26 h). During 24-h acclimation to various salinities (5 to 45 ppt), the amphipods exhibit a respiratory and excretory response to hyper- and hypoosmotic stress; however, a rather constant O:N atomic ratio (around 15) was obtained at the experimental salinities, indicating protein/lipids as metabolic substrate. Both rates of oxygen consumption and ammonia excretion increased with an increasing osmotic difference (0 to 650 mOsm) between the haemolymph and the environmental medium, indicating higher energy requirements for osmotic and ionic regulation at low salinities. In amphipods abruptly transferred from 35 to 5 ppt, a minor decrease of the haemolymph sodium concentrations together with an increased ammonia excretion output indicate a counter-ion regulation of NH 4 + and Na+ during hyposmotic stress.  相似文献   

18.
Various constituents of spring water (calcium, bicarbonate, nitrate, phosphate, total organic material) influence the response of photosynthetic rate of Bostrychia binderi Harvey to changes in salinity. The rate of photosynthesis increased with a decrease in salinity. The rate of photosynthesis in low salinities was greater in seawater diluted with spring water than in sewater diluted with distilled water. Elevation of photosynthetic rates in the lower salinities (0 and 5 ppt) was partially due to increased levels of bicarbonate and various nutrients present in natural spring water. The higher calcium levels in spring water resulted in higher photosynthetic rates in plants held for 3 to 7 d in the lower salinities (0 to 5 ppt). Increased levels of calcium in salinities of 5 ppt or higher increased the photosynthetic rate only during the first 7 d of exposure, since acclimation occurred equally in individuals held for 2 to 8 wk in sewater diluted with distilled or spring water. This study suggests that the diverse algal floras, characteristic of estuaries on the west coast of Florida are in part the result of natural spring water mixing with seawater, sustaining the algae over short periods of low salinities.  相似文献   

19.
R. Gaudy  L. Sloane 《Marine Biology》1981,65(3):297-301
The effects of salinity on oxygen consumption was investigated in cultured Penaeus monodon Fabricius and P. stylirostris Stimpson postlarvae (32 and 35 d after metamorphosis, respectively). In both species, no difference appeared between non-acclimated and fully-acclimated individuals. The metabolic rate was unaffected by salinity variations, but P. stylirostris displayed a tendency (non-significant at P<0.05) to increase respiration at lower salinities. These observations are discussed in reference to the ecology of the young prawns.  相似文献   

20.
J. Otto  S. K. Pierce 《Marine Biology》1981,61(2-3):185-192
In order to study the interaction of the extracellular and intracellular osmoregulatory systems of the bivalve Rangia cuneata, we have measured blood osmotic and ionic concentrations together with intracellular free amino acid concentrations and total tissue water under identical salinity conditions. Like freshwater bivalves, the blood of R. cuneata is maintained hyperosmotic (50 mOsm) to the environment in salinities below 110 mosm by the regulation of Na+, Cl-, K+ and Ca2+ concentrations. On the other hand in company with marine bivalves, R. cuneata also regulates intracellular free amino acids (FAA) as a mechanism to control cellular volume during osmotic stress over the entire non-lethal salinity range (3 to 620 mOsm). Alanine is the predominant intracellular osmotic effector. Thus, by utilizing the osmoregulatory mechanisms of both marine and freshwater bivalves, R. cuneata is able to tolerate salinities ranging from freshwater to 25 ppt and to traverse the faunal salinity boundary, known as the horohalinicum (5 to 8 ppt), controlling cell volume throughout.Please address requests for reprints to Dr. S. K. Pierce  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号