首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ESF Workshop     
Dioxin and PCB monitoring programs for food and feeding stuff in most countries of the world, including many European Countries are currently inadequate. Better control of food production lines and food processing procedures is needed to minimize entry of dioxin to the food chain and will help to avoid dioxin contamination accidents. This would also improve the ability to trace back a possible contamination to its source. European guidelines for monitoring programs should be established to ensure comparable and meaningful results. These guidelines should define the minimum requirements for the design of monitoring programs, analytical methods, and quality assurance. Though data from Northern Europe shows that the general population exposure to dioxin and PCB has decreased during the last ten years these compounds continue to be a risk of accidental contamination of the food chain. The most prominent recent example is the Belgian dioxin contamination of feeding stuff in 1999. The Belgian dioxin contamination was not detected due to dioxin monitoring programs but by their direct biological effects seen in animals. Four other cases of dioxin contamination have been detected in Europe since 1997 due to local monitoring programs. One of them (citrus pulp pellets 1998) was in a much larger scale than the Belgian dioxin contamination. The general population's exposure to dioxins and PCBs is still in the same range (1-4 pg WHO-TEQ/kg body weight and day) as the recently revised WHO tolerable daily intake (TDI). There is concern that short-term high level exposure to dioxins, furans, and PCB may cause biological effects on the human fetal development and further research is required. Further actions to control sources building on considerable advances already made in many countries may need to be supplemented by measures to prevent direct contamination of feeding stuff or food to reduce general population exposure further.  相似文献   

2.
The use of biological indicators is widespread in environmental monitoring, although it has long been recognised that each bioindicator is generally associated with a range of potential limitations and shortcomings. To circumvent this problem, this study adopted the complementary use of bioindicators representing different trophic levels and providing different type of information, in an innovative approach to integrate knowledge and to estimate the overall health state of ecosystems. The approach is illustrated using mercury contamination in primary producers (mosses), primary consumers (domestic pigeons and red-legged partridges) and top predators (Bonelli's eagles) in southern Portugal. Indicator kriging geostatistics was used to identify the areas where mercury concentration was higher than the median for each species, and to produce an index that combines mercury contamination across trophic levels. Spatial patterns of mercury contamination were consistent across species. The combined index provided a new level of information useful in incorporating measures of overall environmental contamination into pollution studies.  相似文献   

3.
Large seasonal fluctuations of the water table are characteristic of aquifers with a low specific yield, including those fractured, double-porosity aquifers that have significant matrix porosity containing virtually immobile porewater, such as the Chalk of northern Europe. Where these aquifers are contaminated, a strong relationship between water table elevation and contaminant concentration in groundwater is commonly observed, of significance to the assessment, monitoring, and remediation of contaminated groundwater. To examine the processes governing contaminant redistribution by a fluctuating water table within the 'seasonally unsaturated zone', or SUZ, profiles of porewater solute concentrations have been established at a contaminated site in southern England. These profiles document the contaminant distribution in porewater of the Chalk matrix over the SUZ at a greater level of detail than recorded previously. A novel double-porosity solute transport code has been developed to simulate the evolution of the SUZ matrix porewater contaminant profiles, given a fluctuating water table, when the groundwater is initially contaminated and the SUZ is initially free of contamination. The model is simply characterised by: the matrix-fracture porosity ratio, the matrix block geometry, and a characteristic diffusion time. De-saturation and re-saturation of fractures is handled by a new approximation method. Contaminant accumulates in the upper levels of the SUZ, where it is less accessible to mobile groundwater, and acts as a persistent secondary source of contamination once the original source of contamination has been removed or has become depleted. The 'SUZ process' first attenuates the progress of contaminants in groundwater, and subsequently controls the slow release of contamination back to the mobile groundwater, thus prolonging the duration of groundwater contamination by many years. The SUZ process should operate in any fractured, micro-porous lithology e.g. fractured clays and mudstones, making this approach widely applicable.  相似文献   

4.
This study examines whether the atmospheric release of Cd and Pb from a refuse incinerator in London has caused contamination of the local environment. Sampling networks were established for street dusts, surface soils, vegetation and total deposit gauges in areas up to 5 km downwind and upwind from the incinerator. Measurements of Cd and Pb indicate there is neither a marked nor an extensive contamination by these metals in the downwind area. However, dust Cd values decreased with distance from the incinerator in this area and Cd deposition rates were higher than in the upwind area. Nevertheless, most Cd values obtained in the downwind area were similar to those previously reported for other parts of London while Pb values were often lower. It is considered that the 100 m stack of the incinerator minimizes the deposition of particulate emissions in the vicinity of this source. Appreciable Cd contamination was found within the grounds of the incinerator, the values being about 4–50-fold higher than in either the upwind or downwind areas. The extent of Pb contamination in this small area was more limited, with values being about twice those found in the two study areas. The source of this contamination is ascribed to fugitive releases arising from the storage and transport of the ashes produced by the incinerator.  相似文献   

5.
Remediation actions at contaminated sites are based on multiple numerical model scenarios considering different parameter distributions, source positions and contaminant transport paths. In some cases the excess of scenarios is due to uncertainties in the conceptual model as a result of the spread of contamination through heterogeneities in the physical system. Reduction of project hypotheses and conceptual model uncertainty is therefore needed. This result can be achieved by coupling hydrogeological investigations with environmental forensic techniques, better localization of the source and understanding of contamination history. In this respect, in the present study, compositional fingerprinting and groundwater flow modeling were applied to a former oil storage facility where, even though a hydraulic barrier had been built to stop the hydrocarbon plume, the presence of some hydrocarbons was still found in downgradient monitoring wells. The final aim was to evaluate the efficacy of the hydraulic barrier and identify of the source of pollution. Fingerprinting results indicated pollution with a gasoline-diesel mixture much altered by water washing and/or biodegradation. Comparison of seven groundwater samples collected in wells and monitoring wells was performed by analyzing the volatile fraction (BTEX) and the total ion chromatogram (TIC), focusing attention on: n-alkanes (m/z 85), alkylcyclohexanes (m/z 83), isoprenoids (m/z 113), C4-alkylbenzenes (m/z 134), C3-C6 alkylbenzenes and polycyclic aromatic hydrocarbons (PAHs). The most probable scenario was then identified by combining the results of fingerprinting with different contaminant paths obtained using the numerical model.  相似文献   

6.
Fuel leaks from underground storage tanks (USTs) and piping have been a major source of groundwater contamination. In the U.S. and Europe, regulations requiring upgrading of USTs to meet specific standards have significantly reduced instances of fuel contamination. Leak detection is primarily dependent on physical measurement systems that are generally capable of detecting leak rates as small as 0.2 L/h. Fuel leaks that are smaller than this detection threshold may remain undetected for long periods of time, posing a risk of contamination to shallow groundwater resources in sensitive areas. This risk was evaluated by modeling fate and transport of fuel components from small UST leaks under a variety of subsurface conditions and assuming that secondary containment does not exist. It was found that small leaks do have the potential to impact shallow groundwater, particularly if subsurface conditions are not conducive to natural attenuation processes. This may explain situations where groundwater contamination has been found below service stations in virgin areas that have upgraded leak detection systems. Modeling indicates that passive venting of tank and piping backfill could virtually eliminate the volatile components of fuel resulting from small leaks. Monitoring the tank and piping backfill for persistent gasoline vapor under very low vapor extraction conditions may be the best way to detect small chronic fuel leaks. Routine monitoring of shallow groundwater should be a component of a leak detection program, particularly in high-risk areas.  相似文献   

7.
This study evaluated the feasibility of supplementing groundwater monitoring protocols by assessing the vadose zone for the extent of residual subsurface contamination. The study also characterized the response of the soil gas signatures with respect to different soil types and degrees of contamination. A field study was conducted at a former gasoline vending station located in Ottawa, Canada. The current state of contamination was determined by analysis of soil samples taken from boreholes. A series of 10 nested soil gas wells with monitoring depths of 0.75, 1.5, 2.25 and 3.0 m were then installed. Using these wells, soil gas surveys were performed at regular intervals over an extended period to quantify Gaseous TPH (TPH g ), oxygen and carbon dioxide concentrations in the soil gas. Results indicate that soil gas wells located near the source term exhibited characteristic soil gas signatures and significant fluctuations in TPH g , oxygen, and carbon dioxide concentrations with time. Soil gas wells located beyond the soil contamination demonstrated limited correlation between TPH g , oxygen and carbon dioxide concentrations and decreased seasonal variability.  相似文献   

8.
PCDD/F contamination of the Baltic Sea has resulted in the European Union imposing restrictions on the marketing of several fish species. Atmospheric deposition is the major source of PCDD/Fs to the Baltic Sea, and hence there is a need to identify the source regions of the PCDD/Fs in ambient air over the Baltic Sea. A novel monitoring strategy was employed to address this question. During the winter of 2006–2007 air samples were collected in Aspvreten (southern Sweden) and Pallas (northern Finland). Short sampling times (24 h) were employed and only samples with stable air mass back trajectories were selected for analysis of the 2,3,7,8-substituted PCDD/F congeners. The range in the PCDD/F concentrations from 40 samples collected at Aspvreten was a factor of almost 50 (range 0.6–29 fg TEQ/m3). When the samples were grouped according to air mass origin into seven compass sectors, the variability was much lower (typically less than a factor of 3). This indicates that air mass origin was the primary source of the variability. The contribution of each sector to the PCDD/F contamination over the Baltic Sea during the winter half year of 2006/2007 was calculated from the average PCDD/F concentration for each sector and the frequency with which the air over the Baltic Sea came from that sector. Air masses originating from the south–southwest, south–southeast and east segments contributed 65% of the PCDDs and 75% of the PCDFs. Strong correlations were obtained between the concentrations of most of the PCDD/F congeners and the concentration of soot. These correlations can be used to predict the PCDD/F concentrations during the winter half year from inexpensive soot measurements.  相似文献   

9.
Soil vapor extraction (SVE) is typically effective for removal of volatile contaminants from higher-permeability portions of the vadose zone. However, contamination in lower-permeability zones can persist due to mass transfer processes that limit the removal effectiveness. After SVE has been operated for a period of time and the remaining contamination is primarily located in lower-permeability zones, the remedy performance needs to be evaluated to determine whether the SVE system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. Numerical modeling of vapor-phase contaminant transport was used to investigate the correlation between measured vapor-phase mass discharge, MF(r), from a persistent, vadose-zone contaminant source and the resulting groundwater contaminant concentrations. This relationship was shown to be linear, and was used to directly assess SVE remediation progress over time and to determine the level of remediation in the vadose zone necessary to protect groundwater. Although site properties and source characteristics must be specified to establish a unique relation between MF(r) and the groundwater contaminant concentration, this correlation provides insight into SVE performance and support for decisions to optimize or terminate the SVE operation or to transition to another type of treatment.  相似文献   

10.
Zebra mussel (Dreissena polymorpha) has been used for the biomonitoring of several POPs (PCBs, DDTs, HCB and HCHs) in the largest Italian subalpine great lakes (Lake Maggiore, Garda, Como, Iseo and Lugano). Samplings were carried out in April 2003 at 15 locations selected according to industrial and anthropic levels of lakes. Results have pointed out high DDT levels in D. polymorpha specimens from Lake Maggiore (700-1400 ng/g lipids, 5-9 times higher than those measured in mussels of other Italian lakes), due to a contamination from a chemical plant located on one of the main lake inlet that occurred in 1996. On the contrary, PCB levels (400-2509 ng/g lipids) highlighted an overall pollution, with some sporadic peaks of contamination. Data showed a moderate increase trend compared to those found in a previous monitoring campaign carried out in 1996. Future monitoring is needed in order to confirm this tendency.  相似文献   

11.
《Environmental Forensics》2013,14(4):319-329
Accidental spills and chronic leaks of fuel oil or other hydrocarbon material (e.g., coal tar) often result in subsurface accumulation of nonaqueous phase liquid (NAPL), which can be a subsequent source of contamination in groundwater. Linking hydrocarbons in groundwater to a source NAPL has been difficult when using standard target analytes (e.g., BTEX) because of differences in partitioning properties of the analytes between the source NAPL and groundwater. Because aqueous solubility is predicted to be the controlling influence in the partitioning of hydrocarbons from NAPL to groundwater, a solubility-based approach to matching dissolved hydrocarbons in groundwater to their source NAPL has been developed and validated for two sites with commonly encountered types of NAPL contamination. Specifically, a gasoline LNAPL and a coal tar DNAPL from two separate sites (West Virginia and California) and groundwater interfaced with these NAPLs were analyzed for approximately 50 gasoline-range hydrocarbons consisting of paraffin, isoparaffin, (mono-) aromatic, naphthene, and olefin compounds (PIANO). Solubility characteristics of selected alkyl aromatic hydrocarbons from the PIANO analysis were used to identify a set of diagnostic hydrocarbons, expressed as hydrocarbon ratios, which were found to be useful in distinguishing the source(s) of hydrocarbons in groundwater. At the West Virginia site, the diagnostic ratios in a downgradient groundwater sample were similar to those of a gasoline NAPL at that site, indicating the source of hydrocarbons to the groundwater was the upgradient gasoline NAPL. The diagnostic ratios of the groundwater in contact with the gasoline NAPL and the remote groundwater were also similar, providing evidence that the diagnostic ratios were retained during transport in the aquifer. At the California site, diagnostic ratios in a cross-gradient groundwater sample differed from those of the coal tar NAPL at that site, indicating that the remote groundwater hydrocarbons did not originate from the coal tar contamination. Environmental factors such as selective degradation of specific isomers and various geological conditions (e.g., soil mineralogy, and organic content) may confound the application of this solubility-based fingerprinting approach. Thus, it is recommended that multiple diagnostic pairs be simultaneously evaluated when considering this fingerprinting approach for specific sites and product types.  相似文献   

12.
There is an increasing concern about dangerous levels of bacterial contamination of rural ground water resources in Ontario and throughout the world. Recent studies in rural parts of Canada have identified leaching bed systems as one of the major sources of this contamination. Field studies were undertaken to evaluate bacterial contamination from three different types of leaching bed designs, using nalidixic acid-resistant Escherichia coli (E. coli NAR) as a biotracer. This biotracer was used rather than passive ground water sampling to clearly identify the source of the contamination and also to allow the determination of travel times and distances more clearly. While this biotracer has been used for other studies its use in actual working septic systems has not yet been reported.This work has also shown that E. coli NAR is an excellent biotracer and can be used to give an accurate assessment of a leaching bed's performance provided it is introduced into the system over a reasonable period of time. Results also show that bacteria are not necessarily removed before the effluent reaches the ground water. The speed, distance of travel and attenuation of biotracer concentrations was found to be highly related to precipitation events, age of system and depth of unsaturated zone below the bed.  相似文献   

13.
Needles of two conifer species, Picea abies and Pinus nigra, were used as passive samplers for monitoring air contamination by sampling at increasing distances from a suspected point source of DDT. Needle concentrations declined with increasing distance downwind of the point source allowing to identify spatial and temporal trends of accumulation. This suggested that conifer needles are effective biomonitors of contamination levels in areas characterized by the presence of semi-volatile substances. Differences in uptake were apparent between the species. Needle morphology and structure were studied with scanning electron microscope (SEM) as were dimensional parameters (surface area, volume). The results suggest that the concentrations depend on a mechanism involving the inner structure of the needles, specifically the number and accessibility of resin channels rather than their surface area. Pine needles have more channels with greater accessibility than spruce. The results suggest that spruce is more suitable for short term measurement while pine for determining long term cumulative exposure.  相似文献   

14.
This study evaluated the feasibility of supplementing groundwater monitoring protocols by assessing the vadose zone for the extent of residual subsurface contamination. The study also characterized the response of the soil gas signatures with respect to different soil types and degrees of contamination.A field study was conducted at a former gasoline vending station located in Ottawa, Canada. The current state of contamination was determined by analysis of soil samples taken from boreholes. A series of 10 nested soil gas wells with monitoring depths of 0.75, 1.5, 2.25 and 3.0 m were then installed. Using these wells, soil gas surveys were performed at regular intervals over an extended period to quantify Gaseous TPH (TPHg), oxygen and carbon dioxide concentrations in the soil gas.Results indicate that soil gas wells located near the source term exhibited characteristic soil gas signatures and significant fluctuations in TPHg, oxygen, and carbon dioxide concentrations with time. Soil gas wells located beyond the soil contamination demonstrated limited correlation between TPHg, oxygen and carbon dioxide concentrations and decreased seasonal variability.  相似文献   

15.
Background, Aim and Scope The article is focused on dioxin, furan, PCB and organochlorine pesticide monitoring in the surface waters of the Central European, protected natural reserve Krivoklatsko, under the UNESCO programme Man and Biosphere. Persistent compounds are presently transported via different means throughout the entire world. This contamination varies significantly between sites. This raises the question of what constitutes the naturally occurring background levels of POPs in natural, unpolluted areas, but which are close to industrialised regions. Information of real background POP contamination can be of high value for risk assessment management of those sites evidently polluted and for the defining of de-contamination limits. Preserved areas should not be seen as isolated regions in which the impacts of human activities and natural factors are either unexpected or overlooked. Every ambient region, even those protected by a law or other means, are still closely connected to neighbouring human developed and impacted areas, and are therefore subject to this anthropogenic contamination. These areas adjacent to natural reserves are sources of diverse substances, via entry of air, water, soil and/or biota. After an extended period of industrial activities, organochlorine pollutants, even those emitted in trace concentrations have reached detectable levels. For future research and for the assessment of environmental changes, present levels of contamination would be of high importance. This work publishes data of the contamination with organochlorine pollutants of this natural region, where biodiversity and ecological functions are of the highest order. Materials and Methods: Semipermeable membrane devices (SPMDs) were utilised as the sampling system. SPMDs were deployed in two small creeks and one water reservoir selected in the central part of the Krivoklatsko Natural Reserve, where it could be expected that any possible contamination by POPs would be lowest. The exposed SPMDs were analysed both for chemical contents of POPs and for toxicity properties. The chemical analyses of dibenzo-dioxins, dibenzo-furans, PCBs and OCPs were analysed by GC/MS/MS on GCQ or PolarisQ (Thermoquest). Toxicity bioassays were performed on the alga Desmodesmus subspicatus, bacteria Vibrio fischeri and crustacean Daphnia magna. All toxicity data were expressed as the effective volume Vtox. Vtox is a toxicity parameter, the determination of which is independent of SPMD deployment time and pre-treatment dilution (unlike, for example, the EC50 of the SPMD extract). Results: The following chemical parameters were monitored: 1) tetra, penta, hexa and hepta dibenzo-p-dioxins and furans; 2) all those detectable from tri- through deca-polychloriated biphenyls (PCBs) and 3) a group of organochlorine pesticides: hexachlorobenzene and isomers of hexachlorocyclohexane, DDE, DDD and DDT. The concentrations of dioxins and furans on the assessed sites varied from under detection levels up to 7 pg.l-1; PCBs were detected in a sum concentration up to 2.8 ng.l-1; and organochlorine pesticides up to 346 pg.l-1. The responses of bioassays used were very low, with the values obtained for Vtox being under 0.03 l/d. Discussion: Toxicity testing showed no toxicity responses, demonstrating that the system used is in coherence with the ecological status of the assessed sites. Values of Vtox were under the critical value – showing no toxicity. The PCA of chemical analysis data and toxicity responses resulted in no correlations between these two groups of parameters. This demonstrated that the present level of contamination has had no direct adverse effects on the biota. Conclusions: The concentration values of six EPA-listed, toxic dioxins and sums of tetra-hepta dioxins; nine EPA toxic dibenzofurans and the sums of tetra-hepta bibenzofurans are presented together with all tri-deka PCBs and organochlorine pesticides (alfa-, beta-, gama-, delta-HCH, HCB, opDDE, ppDDE, opDDD, ppDDD, opDDT, ppDDT). These values represent possible current regional natural background values of these substances monitored within the Central European region, with no recorded adverse effects on the freshwater ecosystem (up until the present time). Recommendations and Perspectives: Assessment of dioxins, furans and other organochlorine compounds within natural reserves can be important for the monitoring of human-induced impacts on preserved areas. No systematic monitoring of these substances in areas not directly affected by industry has generally been realised. There is a paucity of data of the presence of any of these substances within natural regions. Further monitoring of contamination of both soil and biota by dioxins and furans in preserve regions is needed and can be used for future monitoring of man-made activities and/or accidents. Semipermeable membrane devices proved to be a very good sampling system for the monitoring of trace concentrations of ambient organochlorine compounds. Toxicity evaluation using the Vtox concept demonstrated that those localities assessed expressed no toxicity.  相似文献   

16.
Blaine Creek is a fifth-order stream located in eastern Kentucky that has been subject to contamination by oil brines, surface mining, and a coal fly ash settling pond discharge. Toxicity tests, effluent and receiving water chemical monitoring, and Blaine Creek benthic sampling were used to evaluate the effect of the ash pond effluent on the creek. Reproductive impairment of Ceriodaphnia was demonstrated at effluent concentrations ranging from 30 to 100%, but no instream impact on benthic invertebrates could be found at effluent flows that provided up to 65% of the creek's discharge. Correlation and regression analysis of physicochemical versus benthic monitoring data indicated that upstream oil brine contamination and scouring of the creek's predominately shifting sand substrate during rainfall events were the primary factors affecting the benthic fauna, and appeared to override potential effects from other sources. These results demonstrated the value of integrated field/laboratory investigations for effluent impact assessments.  相似文献   

17.
Bitterfeld (Germany) was a major site of chemical production in the former German Democratic Republic with chloralkali electrolysis as the basic process. Effluents were dumped via the creek Spittelwasser into the rivers Mulde and Elbe. Despite the fact that the chloralkali industry is known as a possible source of polychlorinated naphthalenes (PCNs), to date no data about PCN pollution in the region of Bitterfeld and downstream regions are available. Therefore, sediments of the creek Spittelwasser were isomer-specifically analysed for penta-, hexa- and heptachlorinated naphthalenes using GC/MS. Concentrations of 880, 543 and 1120 ng/g dry weight were found, respectively. The isomer pattern suggests chloralkali industry as the major source of PCN contamination. Because of their toxicological relevance we suggest to include PCNs into monitoring and risk assessment programs of the rivers Mulde and Elbe downstream of Bitterfeld.  相似文献   

18.
A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.  相似文献   

19.
A study was performed to determine the source of low concentrations of volatile organic compounds (VOCs) detected in groundwater samples at a solid waste management facility. The affected wells were identified as hydraulically upgradient of an old unlined facility, but downgradient of a new clay-lined landfill. These monitoring wells are close to both sites. Subsurface landfill gas migration was identified after a low permeability cap was installed on the older site. Subsurface gas pressure was monitored to identify horizontal landfill gas migration. Monitoring well headspace gases were evaluated to identify depressed oxygen concentrations and methane because of landfill gas migration into the well. Monitoring well headspace gas VOC concentrations were compared to groundwater VOC concentrations to determine the direction of phase transfer. A ratio above 1.0 of the observed well headspace gas concentration of a VOC to the concentration that would be in equilibrium with the groundwater concentration indicates gas-to-water phase transfer within the well. For the major gas-phase and aqueous-phase VOC, cis-1,2-dichloroethene, gas-to-water phase transfer is clearly indicated from the data for two of the four wells. Fifteen other VOCs were detected in monitoring well headspace gases but not in groundwater samples from the four wells studied. Only one compound in one well was detected in the groundwater sample but not in the headspace gases, and only one compound in one well was detected in both matrices at concentrations that suggested water-to-gas phase transfer. This study suggests that if landfill gas is suspected as the source of detected VOCs, monitoring well construction and stratigraphy are important considerations when attempting to differentiate between groundwater contamination by landfill gas and contamination from other sources.  相似文献   

20.
Data from recent sediment and surface water surveys have been collated and mapped to illustrate the spatial distribution of contaminants across the entire Great Lakes basin. Information from historical surveys, together with data from surface water monitoring programs in three major connecting channels, has also been collated in order to evaluate temporal trends. In general, Lakes Superior and Michigan exhibited the lowest levels of sediment contamination while Lake Ontario had the highest. Contaminants such as gamma-HCH (lindane) and dieldrin were ubiquitous in surface waters across the entire basin, which was indicative of atmospheric sources. The distribution of other compounds including hexachlorobenzene, octachlorostyrene and mirex indicated the presence of local sources within the watersheds of the connecting channels. Surficial sediment contamination was found to have decreased markedly since the late 1960s and 1970s. Similarly, surface water contamination decreased over the period 1986-1997 with concentrations of dieldrin, hexachlorobenzene, octachlorostyrene and mirex reduced by over 50%. However, the spatial distributions of both sediment and surface water contamination indicate that further effort is warranted in reducing local sources of contaminants, particularly in Lake Ontario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号