首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bean plants have been fumigated for 1 h with 300 or 1000 nl litre(-1) SO(2). Dependent on the SO(2) concentration, we observed an evolution of ethane the leaves. Even with 1000 nl litre(-1) SO(2) the evolution lasted for only 4 h. Pretreatment of single leaves with the radical scavenger ethoxyquin prevented this SO(2)-induced ethane formation. Another indication for the initiation of radicalic peroxidative processes by SO(2) was obtained by the manipulation of the endogenous antioxidants vitamin C and glutathione. An increase of both compounds by application of precursors of both biosynthetic pathways could completely suppress peroxidative ethane evolution. We also found a very good quantitative correlation between endogenous glutathione and ethane formation after SO(2) treatment. During these peroxidative processes, several cell components like fatty acids, chlorophylls, carotenoids and vitamin C were decreased. Based on our results, a mechanism for SO(2) induction of radical reactions leading to peroxidation and the role of endogenous antioxidants are discussed.  相似文献   

2.
Exposure-response data from open-top chamber (OTC) experiments are often directly applied to ambient air (AA) conditions. Because microclimatic conditions are modified and pollutant uptake by plants may differ (i.e. 'chamber effect'), there is concern about the influence of OTCs on these relationships. In addition, AA concentrations are often measured at a height which differs from canopy height and correction for the concentration gradient (i.e. 'gradient effect') is necessary. To quantify the relative contribution of plant characteristics and microclimatic factors to these effects, ozone uptake by horizontal leaves at the top of the canopy was calculated for plants grown in OTCs or AA by using a resistance analogy model. Data from an OTC experiment in 1996/97 for six species typical of productive grasslands were used. Ozone concentration inside OTCs was set equal to the concentration measured at a height of 3 m above ground (C(z(ref))) or at canopy height (C(0)). The gradient effect resulted in a 16-27% lower average C(0) than C(z(ref)), depending on species. The main determinant of the chamber effect was a systematic difference in leaf-to-air vapour pressure deficit between OTCs and AA which affected stomatal resistance and ozone uptake. In case of monocultures both effects were species-specific. In species mixtures the gradient effect differed between mixing ratios, whereas the chamber effect was species-specific. Because of the inter-specific difference in the chamber effect on ozone uptake, it is concluded that ozone effects on species mixtures differ systematically between OTCs and AA. The data underline that extrapolation of ozone flux-response relationships from OTC experiments must be based on canopy-level ozone concentrations, and that these relationships should be applied only to single species under microclimatic conditions similar to those prevailing in the experiment.  相似文献   

3.
A simulation model was developed to estimate the stomatal conductance and ozone flux to Norway spruce saplings in open-top chambers. The model was parameterized against needle conductance measurements that were made on 4-6-year-old spruce saplings, grown in open-top chambers, in July-September during three different seasons. The spruce saplings were either maintained well watered or subject to a 7-8 week drought period in July-September each year. The simulated conductance showed a good agreement with the measured conductance for the well-watered as well as the drought stress-treated saplings. The simulations were significantly improved when different vapour pressure deficit (VPD) functions were applied for well-watered and drought-stressed spruce saplings. The cumulated ozone uptake which was calculated from the conductance simulations showed less variation between years, compared to the cumulative ozone exposure index AOT40 (accumulated exposure over a threshold of 40 ppb or nl l(-1)) for the corresponding time periods. Measurements in May 1995 demonstrated the occurrence of long-term 'memory-effects' from the drought stress treatments on the conductance. Memory-effects need to be considered when simulation models for stomatal conductance are to be applied to long-lived forest trees under a multiple stress situation.  相似文献   

4.
Foliage on spruce trees (Picea rubens Sarg.) growing on dry SO(2) deposition zones (dry SO(2) deposition ranging from 0.5 and 8.5 S kg ha(-1) year(-1)) downwind from a SO(2) emission source was analyzed to assess chronic effects of long-term low-grade SO(2) deposition on net photosynthesis, stomatal conductance, dark respiration, stomatal antechamber wax structures, elemental concentrations in and on foliage (bulk and surficial concentrations), and types of epiphytic fungi that reside in the phylloplane. Elemental distributions on stomatal antechambers, on fungal colonies, and on smooth surfaces between stomates and fungus colonies were determined with a scanning electronic microscope (SEM) by way of X-ray scanning. It was found that net photosynthesis of newly developed spruce foliage (current-year, and 1-year-old) was not significantly affected by the local SO(2) deposition rates. Sulfur dioxide deposition, however, may have contributed to the gradual decrease in net photosynthesis with increasing needle age. Dark respiration rates were significantly higher on foliage taken from high SO(2) deposition zones. Stomatal rod-web structures deteriorated to flakes with increasing needle age and increasing SO(2) deposition. Further inspection of the needle surfaces revealed an increasing abundance of fungal colonies with increasing needle age. Many fungal taxa were isolated and identified. It was found that black yeasts responded positively, and Xylohypha pinicola responded negatively to high rates of SO(2) deposition. Surficial concentrations of elements such as P, S, K, Cl, Ca were about 10 times higher on fungal colonies than on smooth needle surfaces. Surficial Ca contents on 4 or 5-year-old needles decreased with increasing SO(2) deposition, but surficial S concentrations remained the same. In contrast, bulk foliar Ca and S concentrations increased with increasing SO(2) deposition.  相似文献   

5.
Potato (Solanum tuberosum cv. Bintje) was grown in open-top chambers under three carbon dioxide (ambient and seasonal mean concentrations of 550 and 680 mumol mol-1 CO2) and two ozone concentrations (ambient and an 8 h day-1 seasonal mean of 50 nmol mol-1 O3) between emergence and final harvest. Periodic non-destructive measurements were made and destructive harvests were carried out at three key developmental stages (24, 49 and 101 days after emergence) to establish effects on growth and tuber yield. Season-long exposure to elevated O3 reduced above-ground dry weight at final harvest by 8.4% (P < 0.05), but did not affect tuber yields. There was no significant interaction between CO2 and O3 for any of the growth and yield variables examined. Non-destructive analyses revealed no significant effect of elevated CO2 on plant height, leaf number or green leaf area ratio. However, destructive harvests at tuber initiation and 500 degrees Cd after emergence showed that above-ground dry weight (8 and 7% respectively) and tuber yield (88 and 44%) were significantly increased (P < 0.05) in the 550 mumol mol-1 CO2 treatment. Responses to 550 and 680 mumol mol-1 CO2 were not significantly different for most parameters examined, suggesting the existence of an upper limit to the beneficial influence of CO2 enrichment. Significant effects on above-ground dry weight and tuber yield were no longer apparent at final harvest, although tuber numbers were increased (P < 0.05) under elevated CO2, particularly in the smaller size categories. The results show that the O3 treatment imposed was insufficient to reduce tuber yields and that, although elevated CO2 enhanced crop growth during the early stages of the season, this beneficial effect was not sustained to maturity.  相似文献   

6.
The response of shrubs of Larrea tridentata (DEC) Coville (creosotebush) exposed to sulphur dioxide (SO(2)) was evaluated using in situ plants of the Majove Desert. Larrea was exposed to acute levels of 0.3 to 2.0 microl litre(-1) SO(2) for periods up to 13 days using field chambers or an open-air fumigation system. Plants exposed in the spring exhibited considerable leaf injury (necrosis and defoliation) when exposed to 2.0 microl litre(-1) SO(2), and in the autumn had leaf injury when exposed to >0.4microl litre(-1) SO(2). Injured plants had higher transpiration rates, less negative water pressure potentials, and/or lower photosynthetic rates than control plants. It is likely that Larrea would not be injured by the typically low SO(2) concentrations and dry environmental conditions of the Mojave Desert. However, if injury were to occur, it would be accompanied by changes in plant-water relations and photosynthesis, followed by recovery after the SO(2) stress was removed.  相似文献   

7.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

8.
Greenhouse and field studies were performed to examine the growth responses and possible phytoremediation capacity towards heavy metals of several Brassicaceae (Brassica alba, Brassica carinata, Brassica napus and Brassica nigra) and Poaceae (durum wheat and barley). Soils used featured total concentrations of Cr, Cu, Pb and Zn largely exceeding the maximum levels permitted by the Italian laws. Different organic amendments were tested such as a compost and the plant growth-promoting rhizobacterium Bacillus licheniformis. In the greenhouse experiment, plant length, leaf area index and shoots dry matter were evaluated periodically for the Brassicaceae examined. Whereas plant length, grains production, weight of 1,000 seeds, ear fertility and tiller density were determined under field conditions at the end of the crop cycle for wheat and barley. In general, the species tested appeared to be tolerant to high heavy metal concentrations in soil, and slightly significant differences were found for all parameters considered. A marked growth increase was shown to occur for Brassicaceae cultivated on compost- and bacillus-amended contaminated soils, with respect to non-amended contaminated soils. With some exception, higher growth parameters were measured for wheat and barley plants cropped from contaminated soils in comparison to non-contaminated soils. Further, bacillus amendment enhanced the length of wheat and barley plants in both non-contaminated and contaminated soils, while different effects were observed for the other parameters evaluated.  相似文献   

9.
Statistical analysis was performed using selected sets of combined data from the US National Crop Loss Assessment Network and the European Open-Top Chambers Programme to examine the relationships between the occurrences of hourly ambient ozone (O3) concentrations and adverse crop yield responses. The results suggest that the frequency of occurrences of relatively low hourly O3 concentrations ( approximately <35 ppb) are not as important as moderate to higher concentrations in eliciting negative crop biomass responses. They also suggest that daily peak (highest) hourly O3 values ( approximately >90 ppb) may not be as critical, most likely because they frequently do not occur during time periods when conditions that promote atmospheric conductivity (O3 deposition) and plant uptake (O3 absorption) are in coherence.  相似文献   

10.
The effects of joint action of SO(2) and HF on three Eucalyptus species were studied by exposing them to combinations of < 13, 122 or 271 microg m(-3) of SO(2) and 0.03, 0.39 or 1.05 microg m(-3) of HF in open top chambers for 120 days. HF and SO(2) reduced the area and weight of immature leaves in all three species, but there were few interactive effects on immature leaves. The response of mature leaves to exposure differed among the species, with the greatest effects on E. calophylla and least effects on E. marginata. The interaction of HF + SO2 had no effect on leaf S concentrations in any of the species, but it reduced leaf F concentrations in E. calophylla and E. gomphocephala. HF increased leaf injury in E. calophylla and E. gomphocephala when simultaneously exposed to 271 microg m(-3) of SO(2), but had no effect at 122 microg m(-3), or on E. marginata. The addition of 271 microg m(-3) of SO(2) increased leaf injury when E. gomphocephala was exposed to 0.39 microg m(-3) of HF and when E. calophylla was exposed to 1.05 microg m(-3) of HF, despite reducing the leaf F concentrations. In some cases the interaction of the pollutants may increase susceptibility to visible injury.  相似文献   

11.
We examined the response of hybrid poplar to elevated CO2 in contrasting growth environments: controlled environment chamber (CE). open-top chamber (OTC) and poplar free air CO2 enrichment (POPFACE) in order to compare short versus long-term effects and to determine whether generalisations in response are possible for this fast growing tree. Leaf growth, which for poplar is an important determinant of stemwood productivity was followed in all environments, as were the determinants of leaf growth-cell expansion and cell production. Elevated CO2 (550-700 micromol mol(-1), depending on environment) resulted in an increase in final leaf size for Populus trichocarpa x Populus deltoides (Populus x interamericana) and P. deltoides x Populus nigra (Populus x euramericana), irrespective of whether plants were exposed during a short-term CE glasshouse study (90 days), a long-term OTC experiment (3 years) or during the first year of a POPFACE experiment. An exception was observed in the closed canopy POPFACE experiment, where final leaf size remained unaltered by CO2. Increased leaf extension rate was observed in elevated CO2 in all experiments, at some point during leaf development, as determined by leaf length. Again the exception were the POPFACE experiment, where effects were not statistically significant. Leaf production and specific leaf area (SLA) were increased and decreased, respectively, on five out of six occasions, although both were only statistically significant on two occasions and interestingly for SLA never in the FACE experiment. Although both cell expansion and cell production were sensitive to CO2 concentration, effects appeared highly dependent on growth environment and genotype. However, increased leaf cell expansion in elevated CO2 was often associated with changes in the biophysical properties of the cell wall, usually increased cell wall plasticity. This research has shown that enhanced leaf area development was a consistent response to elevated CO2 but that the magnitude of this response is likely to decline, in long-term exposure to elevated CO2. Effects on SLA and leaf production suggest that CE and OTC experiments may not always provide good predictors of the 'qualitative' effects of elevated CO2 in long-term ecosystem experiments.  相似文献   

12.
Sulphur dioxide (SO2) abatement is attracting wide attention, with its generation increasing rapidly in China. In this paper, we calculate the SO2 rational abatement ratio (SRAR) of 30 regions in China from 1990 to 2005, by applying Data Envelopment Analysis (DEA) based on the regional own production frontier. Results show that, the more developed area is, the lower SRAR is. The eastern, central and western areas have the lowest, medium and highest 1990-2005 average SRAR (22.17%, 46.99% and 58.28%), respectively. Chinese government should emphasise particularly on SO2 abatement in central and western area. More investment in SO2 management, introducing advanced technology as well as popularising clean coal technology are the urgent tasks for central and western area to improve SO2 emission efficiency.  相似文献   

13.
Grafted Norway spruce trees were subjected to exposure beginning in April 1988, to one of four different air treatments in open-top chambers: Charcoal filtered air (CF), non-filtered air (NF), non-filtered air with the addition of O(3) during summer (NFO), and SO(2) plus NO(2) during winter (NFOSN). CF trees were considered as the reference group. No effects on growth parameters were observed. Samples of the two youngest needle year classes were taken late in November 1989 for enzyme determinations. The activity of ascorbic acid peroxidase (A-POD) increased the same level in all treatments, and activities of catalase and dehydroascorbic acid reductase (DHA-R) increased only in NF and NFO treatments. A higher level of activity in the NFOSN treatment was observed only for glucose-6-phosphate-dehydrogenase (Glc-6-P-DH) and non-specific peroxidase (POD). Isoelectric focusing of POD showed a changed pattern in the NFOSN treatment. Neither activity nor isoelectric focusing of superoxidase dismutase (SOD) was changed in any of the treatments.  相似文献   

14.
15.
Field trials with winter wheat (Triticum aestivum L.) grown in open-top chambers and exposed to either ambient filtered (F) or unfiltered (NF) air were carried out for 3 years in northern Italy. The experiments were performed at two places, a rural and an urban site in the Po Plain. The data obtained show no significant difference in protein, starch and glucose contents between the treatments; nevertheless, a tendency towards an increase in glucose and a decrease in starch contents was observed in the F chambers compared with NF. In addition, potassium levels were lower in F than in NF treatment, while calcium were higher. Ozone levels observed in the Po Valley are not sufficiently high to cause significant differences in quality parameters of winter wheat.  相似文献   

16.
Open-top chambers (OTCs) and corresponding ambient air plots (AA) were used to assess the impact of ambient ozone on growth of newly planted apple trees at the Montague Field research center in Amherst, MA. Two-year-old apple trees (Malus domestica Borkh 'Rogers Red McIntosh') were planted in the ground in circular plots. Four of the plots were enclosed with OTCs where incoming air was charcoal-filtered (CF); four were enclosed with OTCs where incoming air was not charcoal-filtered (NF) and four were not enclosed, allowing access to ambient air conditions (AA). Conditions in both CF and NF OTCs resulted in increased tree growth and changed incidence of disease and arthropod pests, compared to trees in AA. As a result, we were not able to use the OTC method to assess the impact of ambient ozone on growth of young apple trees in Amherst, MA.  相似文献   

17.
A mathematical modeling of sulphur dioxide pollution in Erzurum City   总被引:3,自引:0,他引:3  
A non-linear simple air-quality model was developed by applying the continuity equation for the air control volume over Erzurum city center and tested using daily average values of SO2 and meteorological data obtained during the winter seasons in Erzurum, Turkey from 1994 to 1998. Model parameters are estimated by non-linear regression analysis. Agreement between model predictions and measured data was found very satisfactory with standard deviations less than 20 microg/m3.  相似文献   

18.
Field grown oats, Avena sativa L. cv Vital, were exposed to filtered and unfiltered air from anthesis until harvest in open-top chambers at a site in south-west Sweden. Ambient plots were used to study the influence of the chamber itself. With the exception of the number of grains per panicle, which was significantly higher in the charcoal-filtered treatment, no significant filtration effects were obtained for any of the plant growth parameters studied), i.e. grain yield, number of panicles per square metre, 1000-grain weight, straw yield and harvest index.) The chamber had a significant negative effect on grain yield, 1000-grain weight and straw yield. None of the yield quality parameters that were measured, such as crude protein content, crude fibre content, fat content, volume weight of the grain and water content of the grain at harvest, were significantly influenced by either air filtration, or the presence of the chamber. The chlorophyll content of the flag leaves was higher in the charcoal-filtered treatment than in the non-filtered and ambient air treatments towards the end of the experiment, indicating that filtering of the air delayed senescence. The decline of the shoot area after the onset of plant senescence proceeded faster in both chamber treatments. The faster development in the chamber was explained by the faster accumulation of thermal time in the chamber.  相似文献   

19.
The kinetics of the conversion of ammonia and sulphur dioxide to ammonium sulphate in water droplets in the atmosphere in the absence of metal ion catalysts has been reconsidered. It is concluded that the reaction is an order of magnitude faster than earlier work suggested, and that lowering the temperature increases the rate by a large factor. In a cloud or a thick mist appreciable amounts of ammonium sulphate may be formed in a few minutes; nevertheless a substantial proportion of unreacted ammonia may sometimes persist for hours, even though excess sulphur dioxide is present and the initial reaction is fast.  相似文献   

20.
Growth and yield were reduced but (14)C translocation velocity was not affected by increasing levels of ozone in spring wheat exposed in open top chambers to the following treatments: charcoal filtered air (CF), non-filtered ambient air (NF), or NF with addition of 30 microl litre(-1) ozone, 8 h daily (NFO). Destructive harvests were performed at anthesis and at maturity. Parts of the flag leaf or the second leaf were exposed to (14)CO(2) in small cuvettes for 5 min before, during and after anthesis. The translocation velocity was followed by autoradiography and scintillation counting of the plants frozen and lyophilized at different times after labelling. The label was transported at the same velocity in all the treatments. Ozone induced changes in carbon allocation or partitioning should probably be explained as amounts of carbon transported (mg s(-1)), rather than as transportation velocity (mm s(-1)). The amount translocated may be governed by source conditions under O(3) stress: reduced healthy green biomass and photosynthesis, but perhaps also by impairment of phloem loading because of membrane damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号