首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The water-flushed sewage system represented an advance in human sanitation when adopted in the nineteenth century but is coming under increasing criticism because it wastes water of drinking quality and sewage treatment plants do not completely clean the effluent. A number of on-site waste disposal systems are now available or under development which may eliminate the need for sewers and central treatment plants: aerobic, biological, composting, incinerating, oil-flushed, and vacuum or pressure systems. Official agencies should test them to determine if one or more can replace central sewer systems. As part of the program, the kitchen garbage grinder should be phased out.  相似文献   

2.
Distillery effluent can be converted into biogas and the residue can be utilized as a fertilizer if it is detoxified. Several nitrifying bacteria were screened for detoxification of distillery effluent rich in chloride, nitrogen compounds, free ammonia and monovalent cations. Nitrosococcus oceanus collected from a brackish water lake (Chilka, Orrisa) was noticed to be a potential candidate for detoxification of distillery effluent. The detoxified distillery effluent was used in rice plant culture. The growth and development of rice plants was examined in terms of DCPIP—Hill activity, total carbohydrate, total protein and biomass of rice plants. The detoxified effluent-treated rice plants showed better growth and development as compared with control plant grown in full nutrient solution (Hoagland solution).  相似文献   

3.
Irrigation with reclaimed effluent (RE) is essential in arid and semiarid regions. Reclaimed effluent has the potential to stimulate gaseous N losses and affect other soil N processes. No direct measurements of the N2 and N2O emissions from Mediterranean soils have been conducted so far. We used the 15N gas flux method in a field and a laboratory experiment to study the effect of RE irrigation on gaseous N losses and other N transformations in a Grumosol (Chromoxerert) soil. The fluxes of N2, N2O, and NH3 were measured from six Grumosol lysimeters following application of either fresh water or RE. The N fertilizer was applied either as 15NH4 or 15NO3. Only up to 0.3% from the applied N fertilizer was lost as N2O + NH3. Reclaimed effluent enhanced the losses of NH3, but did not affect those of N2O. Nitrification and denitrification were equally important to N2O production. Laboratory incubations were performed to both confirm the influence of the irrigation water type and to test the effect of moisture content. Significant quantities of N2 and N2O (up to 3.1% of the applied fertilizer) were emitted from saturated soils. Reclaimed effluent application did not induce higher N2O emissions, yet significantly more (approximately 33%) N2 was emitted from RE-irrigated soils. Denitrification contributed up to 75% of the N2O amounts emitted from saturated soils. Reclaimed effluent application inhibited nitrification in the Grumosol by 15 to 25% and induced NO2 accumulation in soils incubated at a field-capacity moisture content.  相似文献   

4.
ABSTRACT: Application of fertilizer can degrade quality of runoff, particularly during the first post-application, runoff-producing storm. This experiment assessed and compared runoff quality impacts of organic and inorganic fertilizer application for a single simulated storm occurring seven days following application. The organic fertilizers used were poultry (Gallus gallus domesticus) litter, poultry manure, and swine (Sus scrofa domesticus) manure. All fertilizers were applied at an application rate of 217.6 kg N/ha. Simulated rainfall was applied at 50 mm/h for an average duration of 0.8 h. Runoff samples were collected, composited, and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliforms (FC), and fecal streptococci (FS). Application of the fertilizers did not alter the hydrologic characteristics of the receiving plots relative to the control plots. Concentrations of fertilizer constituents were almost always greater from treated than from control plots and were usually much greater. Flow-weighted mean concentrations of NH3-N, PO4-P, and TP were highest for the inorganic fertilizer treatment (42.0, 26.6, and 27.9 mg/L, respectively). Runoff COD and TSS concentrations were greatest for the poultry litter treatment. Concentrations of FC and FS were greater for fertilized than for control plots with no differences among fertilized plots, but FC concentrations for all treatments were in excess of Arkansas' primary and secondary contact standards. Mass losses of fertilizer constituents were low (≤ 3 kg/ha) and were small proportions (≤ 3 percent) of amounts applied.  相似文献   

5.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

6.
Recycling and conservation efforts for water are the need of the day because of the lack of new water sources and the ever-increasing demand for drinking water. Seedlings of Acacia nilotica L. were irrigated with: canal water (T1, control); municipal effluent (T2); textile effluent (T3); steel effluent (T4); textile + municipal effluent in 1:1 ratio (T5); steel + municipal effluent in 1:2 ratio (T6); steel + textile in 1:2 ratio (T8) and steel + municipal + textile in 1:2:2 ratio (T7) with views to observe effluents effect on the seedlings and its adaptability and to recommend safe disposal of these effluents. Seedlings in T6, T7 and T8 showed 50% lesser height and collar diameter than those in control. Seedlings in T2 attained greatest height, collar diameter, numbers of branches and produced 140 g dry biomass seedling−1. Highest concentration of manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) and lowest concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in the seedlings of T4, T6, T7 and T8 resulted in nutritional imbalance, mineral toxicity and reduction in photosynthetic (Pn) and transpiration (E) rates and caused seedling mortality. Seedlings of T3 had highest sodium concentration and low concentration of Ca, Mg and micronutrients resulting in nutritional imbalance, augmented chlorosis and reduced gas exchange and biomass by half as compared to control. Increased growth, Pn and E and biomass in seedlings of T5 over T3 and survival period in T6, T7 and T8 seedlings suggested a beneficial effect of effluents mixing. Unscientific disposal should be avoided and toxic concentration of metal ions␣may be reduced for long-term application and harmless disposal of effluents in afforestation and urban development.  相似文献   

7.
The operational parameter MRT%FE, representing the mean residence time of different ages fractions of effluent within a completely mixed reactor, was evaluated and integrated with first order kinetics. The parameter was used to model Escherichia coli concentrations in a municipal wastewater reservoir managed under different operating conditions (continuous and discontinuous). The study was conducted during 2004-2005 in a reservoir receiving effluents from the activated sludge treatment plant of Caltagirone (Eastern Sicily - Italy). The analytical approach is applied to the hydraulic state variables of the system (daily stored volumes, inlet and outlet flows), and the physical-chemical (pH, temperature, EC, TSS, BOD(5), COD) and bacteriological wastewater parameters (E. coli, FC, FS). In order to evaluate the reliability of the proposed approach, predicted E. coli concentrations within the reservoir were compared with measured ones by the correlation coefficient, F-test and Sperman's index. The study included the evaluation of die-off coefficient K(T) (d(-1)), light extinction coefficient K (m(-1)) and their relationships with climatic factors. Results of the study confirm that E. coli removal is related to the fractions of fresh effluent remaining each day within the reservoir with MRT%FE of about 5-8d, significantly lower than the nominal detention time (about 27d). The E. coli die-off coefficient (K(T)) was higher during system discontinuous operations and correlated with incident solar radiation and water temperature.  相似文献   

8.
Hospital effluents are loaded with pathogenic microorganisms, partially metabolized pharmaceutical substances, radioactive elements, and other toxic substances. Such effluents if not treated properly can damage the natural environment and create a biological imbalance. This paper points out the areas of concern for hospital wastewater disposal and reports the findings of a limited physico-chemical study of treatment options for hospital effluents conducted at Christian Medical College and Hospital, Vellore, Tamil Nadu. The effluent collected was checked for conventional parameters and subjected to coagulation experiments. The raw and settled effluents were coagulated with FeCl(3), filtered and disinfected. Physico-chemical treatment seems to be an attractive option for the cost-effective disposal of hospital effluents. The results of this study call for further detailed study in this area.  相似文献   

9.
This work is intended to show the characterization of three effluents (X, Y, and Z) derived from laboratory analyses conducted in the quality control department of a beneficiated bentonite products factory in order to present alternatives for their treatment and final disposal according to Brazil's National Solid Waste Policy (Política Nacional de Resíduos Sólidos – PNRS, Law 12,305/2010, Brazil). Analyses to identify the characteristics of the effluents revealed that the pH, salinity, electroconductivity, and total dissolved solids were in agreement with the organic and mineral nature of the effluent constituents: solvent, clay minerals, water, and activating agent. To assess reuse proposals, the effluents were subjected to the following tests: (a) swelling characteristic with effluent X, (b) petrochemical characterization of Y, and (c) swelling characteristic using commercial solvent and activated clay produced with effluent Z. Preliminary results indicate that each of these effluents can be reused variously in the laboratory, as a fuel, or in the original analysis/process.  相似文献   

10.
Color and chemical oxygen demand (COD) in bleach plant effluents are of concern. Acidified flyash can effectively remove both color and COD from caustic bleach plant effluents. Equally effective, but quicker and easier, is to acidify the effluent to approximately pH 1 and use untreated flyash. Based on maximum color removal, the required contact time is short, about 10 min, and the optimum ash dosage is that amount which raises the pH of the final effluent to about 5. Sufficient color removal is obtained to easily meet Maine's color regulations. Preliminary tests on samples of deionized water spiked with two arochlors of PCB showed high removal efficiency.The major cost of implementing and operating the cleanup procedure will be the cost of the required acid. This might be minimized by using some of the acidic (chlorine) effluent to lower the pH of the caustic effluent. This will, however, lead to less color reduction, and an unknown effect on the COD.  相似文献   

11.
Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.  相似文献   

12.
The environmental problem caused by the effluents from the four main agrifood industries in Extremadura (W Spain) is evaluated in the present work. In particular, attention is paid to the management of wastes from slaughterhouse operations. Pollution is quantified in terms of equivalent population and biological oxygen demand, for which very high values are reported.Efforts are also focused on the search of viable technical solutions for the treatment of those residues and their energetic valuation. In this sense, anaerobic digestion techniques are proposed, not only because they lead to a drastic decrease in their pollution potential, but also because significant volumes of biogas are obtained. This biogas might be used to produce electricity to be transferred to the electrical network. This way, anaerobic digestion plants would allow depreciation within a relatively short period.In particular, an analysis of the economics of a plant for the codigestion of solid and liquid effluents from meat industry is carried out, and a payback time between 7 and 8 years was achieved.  相似文献   

13.
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively.  相似文献   

14.
Land-spreading and spray irrigation are the most widely used practices for the disposal of dairy wastewaters in Ireland but in some cases there can be problems due to contamination of surface and ground water. The use of intermittent sand filtration has been suggested as an alternative treatment process. However, a single pass through a sand filter limits denitrification because of the absence of reducing conditions following nitrification and the lack of an available carbon source. This leads to poor total nitrogen (TN) reduction and an effluent that is high in nitrate nitrogen (NO3-N). This paper follows a previous paper in which two instrumented stratified sand filter columns (0.9 and 0.425 m deep, and both 0.3 m in diameter) were intermittently loaded with synthetic dairy parlor washings at a number of hydraulic loading rates, leading to a TN reduction of 27 to 41%. In the present study, under a chemical oxygen demand (COD) of 23.4 g m(-2) d(-1), the TN was reduced by 83.2% when three-quarters of the sand filter effluent was recirculated through an anoxic zone. This produced an effluent NO3-N concentration of 60 mg L(-1). With recirculation, the improvement in the removal of organic matter and ammonia N (NH4-N) is minimal. Recirculating sand filters appear to offer a mechanically simple and effective method for the removal of nitrogen from dairy parlor effluents and are a significant improvement over a single-pass sand filter.  相似文献   

15.
《中国环保产业》2012,(7):21-25
综述了我国工业固体废物处理利用行业2011年发展概况;介绍了目前国内大宗固体废物资源化技术、危险废物处理技术、餐厨垃圾处理技术、废油资源化技术的进展情况;提出要以循环经济理念治理固体废物污染,并分析探讨了城市层面发展循环经济的共性技术;就行业的发展提出了建议。  相似文献   

16.
This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.  相似文献   

17.
Wood processing effluents contain different types of phenolic compounds, from simple monomers to high molecular weight (MW) polyphenolic polymers, that can inhibit wastewater treatment. This work presents a comparative study of the methanogenic toxicity produced by three wood processing effluents (hardboard, fiberboard and BKME (kraft mill effluent)) using Pinus radiata, Eucalyptus and Tepa as feedstock (the last one being a native Chilean tree species). This study evaluates the influence of non-adapted granular and adapted flocculent sludge on forest industrial wastewater treatment as well as continuous anaerobic biodegradation of hardboard processing effluent using the upflow anaerobic sludge blanket (UASB). The adapted biomass (flocculent sludge) did not show any lag-phase signs. The 50% IC (the concentration causing 50% inhibition of methanogenic activity) was 4.3 g COD-effluent (chemical oxygen demand (COD)-of the effluent)/l and 2.8 g COD-effluent/l for the flocculent sludge and the granular sludge, respectively. The UASB system worked at low organic load rates (0.1-0.4 g COD/l d) with the COD removal ranging between 10 and 30%, and color removal did not occur under anaerobic conditions due to high MW. Indeed, the MW analysis indicates the presence of phenolic compounds over 25,000 Da in the anaerobic effluent.  相似文献   

18.
ABSTRACT: Agricultural practices such as cattle grazing and animal manure application can contribute to relatively high runoff concentrations of fecal coliform (FC) and fecal streptococcus (FS). Available information, however, is inconsistent with respect to the effects of such practices as well as to measures that can discriminate among candidate sources of FC and FS. The objective of this study was to assess the effects of grazing, time of year, and runoff amounts on FC and FS concentrations and to evaluate whether FCIFS concentration ratios are consistent with earlier values reported as characteristic of animal sources. Runoff from four Northwest Arkansas fields was sampled and analyzed for fecal coliform (FC) and fecal streptococcus (FS) for nearly three years (1991–1994). Each field was grazed and fertilized, with two fields receiving inorganic fertilizer and two receiving animal manure. Runoff amount had no effect on runoff concentrations of FC or FS. There were no consistent relationships between the presence of cattle and FC and FS runoff concentrations. Both FC and FS concentrations were affected by the season during which the runoff occurred. Higher concentrations were observed during warmer months. Runoff FC concentrations exceeded the primary contact standard of 200 cfu/100 mL during at least 89 percent of all runoff events and the secondary contact standard of 1000 cfu/100 mL during at least 70 percent of the events. Ratios of FC to FS concentrations varied widely (from near zero to more than 100), confirming earlier findings that FC/FS ratios are not a reliable indicator of the source of FC and FS.  相似文献   

19.
ABSTRACT: In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and South port Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978–1980) and post- (1983–1986) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.  相似文献   

20.
Tailoring nitrogen (N) fertilizer applications to cotton (Gossypium hirsutum L.) in response to leaf N status may optimize N use efficiency and reduce off-site effects of excessive fertilizer use. This study compared leaf and canopy reflectance within the 350 to 950 nm range in order to identify reflectance ratios sensitive to leaf chlorophyll (Chl), and hence N status, in cotton. Plants were grown outdoors in large pots using half-strength Hoagland's (control) solution until some three-row plots received a restricted supply of N. Treatments comprised control, 20% of control N at first flower bud (square) onward; 0 and 20% of control N at first flower onward; and 0% of control N at fruit-filling onward. Despite leaf N values ranging from 51 to 19 g kg-1 across treatments and sampling dates, a weak correlation was obtained between Chl and N (r2 = 0.32, df = 70). In general, N stress led to increased reflectance at 695 +/- 2.5 nm (R695) and decreased reflectance at R410, and changes in leaf N were best correlated with either R695 or R755 in leaves and either R410 or R700 in canopies. The strongest associations between leaf constituent and canopy reflectance ratio were Chl vs. R415/R695 (r2 = 0.72), carotenoids vs. R415/R685 (r2 = 0.79), and N vs. R415/R710 (r2 = 0.70). The R415 measure appears to be a more stable spectral feature under N stress, as compared with more pronounced changes along the reflectance red edge (690-730 nm). Multiple regression identified a three-waveband canopy reflectance model that explained 80% of the variability in leaf N. Results indicate that remote sensing of N status in cotton is feasible using narrow-waveband reflectance ratios that involve the violet or blue region of the spectrum (400 to 450 nm) and the more commonly featured red-edge region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号