首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

2.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

3.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

4.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

5.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

6.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

7.
Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g−1 of dry cell was projected for 31.9 g L−1 sucrose and 1.3 g L−1 butyrate, and the maximum specific butanol production rate of 0.87 g d−1 g−1 of dry cell was predicted for 25.0 g L−1 sucrose and 2.6 g L−1 butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol−1 was projected for 25.0 g L−1 sucrose and 2.3 g L−1 butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol−1 when butyrate addition increased from 0 to 1 g L−1 under low sugar concentration (3.8 g L−1 sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone–butanol–ethanol fermentation.  相似文献   

8.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   

9.
Chen H  Jiang JG 《Chemosphere》2011,84(5):664-670
Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L−1 trichlorfon or 0.0005 g L−1 dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L−1 trichlorfon or 0.001-0.004 g L−1 dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L−1 trichlorfon or 0.005 g L−1 dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L−1 and 0.032 g L−1. Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo.  相似文献   

10.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

11.
The gold nanoparticles (Au-NPs) are being increasingly used because of their huge diversity of applications, and consequently, elevated levels in the environment are expected. However, due to their physico-chemical properties and functionalization a high variety of Au-NPs can be found, and complete toxicological information for each type of Au-NPs still lacks, and even, the toxicological information for the same species is sometimes contradictory. Therefore, hazard assessment should be done case by case. Hence, the objective of this study was to obtain ecotoxicological information of the same Au-NPs in aquatic organisms and to find a rationale for Au-NPs toxicity. For such a purpose, bare and hyaluronic acid capped Au-NPs (12.5 nm) along with Au-NPs bulk material were tested on freshwater algae, Daphnia and zebrafish. Results showed that while gold nanoparticles were found to be harmless to the tested organisms, the soluble gold showed to be toxic to algae and Daphnia, with an LC50 between 1 and 2 mg L−1. Comparing our results with those gathered in the literature, it appears that a common hazard assessment of Au-NPs on the studied organisms can be elucidated.  相似文献   

12.
Azizullah A  Richter P  Häder DP 《Chemosphere》2011,84(10):1392-1400
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC50 values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC50 values of 10.8 and 34 mg L−1, respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L−1 and above while chlorophyll b significantly decreased at concentrations above 750 mg L−1. The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure.  相似文献   

13.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

14.
15.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

16.
Mustafa SA  Davies SJ  Jha AN 《Chemosphere》2012,87(4):413-422
Hypoxic events frequently occur in the aquatic environment in association with micro pollutants, including heavy metals. Only a few studies are however available on the uptake and biological responses of heavy metals under hypoxic conditions. To elucidate the phenomenon, mirror carp Cyprinus carpio L. (16.13-16.22 g) were exposed chronically to dietary copper (Cu; 250 and 500 mg kg dry wt.−1) for 30 d under normoxic (8.25 mg O2 L−1) and hypoxic (∼3 mg O2 L−1) conditions and adopting an integrated approach, sub-lethal biomarker responses were determined at different levels of biological organisation. Level of oxidative DNA damage (as determined by modified Comet assay) showed strong significant difference following exposure to dietary Cu level under normoxic (1.6-fold) as well as under hypoxic condition at both Cu levels (2.1 and 2.5-folds respectively). Significant difference was also observed for haematological parameters (i.e. increased red and white blood cells, haematocrit value and haemoglobin concentration). Quantitative histology revealed alterations in tissues (i.e. liver and gills) for hypoxic and all dietary Cu treatment groups under both normoxic and hypoxic conditions suggesting a compensatory response to these organs (< 0.05). The order of Cu accumulation in tissues (as determined by ICP-OES) was liver > intestine > kidney > gill. Interestingly, SGR under both normoxic and hypoxic conditions reduced with elevating Cu levels (p = 0.019). Overall, the results provide evidence for enhanced toxicological responses in fish following exposure to Cu either alone or in combination with hypoxic condition and lends support to the evolving viewpoint that many water quality guidelines should be revisited in terms of new ecotoxicological criteria.  相似文献   

17.
The aim of the present study is the comparative examination of accumulation and detoxification of Cu and Hg in digestive gland and gills of mussels Mytilus galloprovincialis, using atomic absorption spectrophotometry and autometallography. Mussels were exposed to 0.08 mg L−1 Cu, 0.08 mg L−1 Hg, as well as to a mixture of 0.08 mg L−1 Hg and 0.08 mg L−1 Cu for 11 d. After the experimental exposure, animals were kept under laboratory conditions for a detoxification period of 7 d. An antagonistic effect of Cu against to Hg accumulation was noted in the digestive gland of mussels after the experimental exposure, as well as after the detoxification period, supporting the protective role of Cu against to Hg toxicity in this tissue. Digestive gland was suggested as a main organ for Hg accumulation and gills as a target position for Cu accumulation. Additionally, lower time was evaluated for Hg detoxification in the digestive gland and gills of mussels, in relation to those addressed for Cu detoxification in the same tissues. The evaluation of black silver deposits (BSD) extent performed in digestive gland and gills was suggested as a less sensitive approach, in relation to atomic absorption spectrophotometry (AAS), to indentify the concentration of heavy metals in tissues of mussels. The toxic effects of Hg, Cu and a mixture of them on lysosomal system of the digestive cells are also discussed.  相似文献   

18.
The modified excised leaf disc method was used to measure the effects of six insecticides on eggs, larvae, adults, and female fecundity of Galendromus occidentalis (Nesbitt) in a ‘worst case laboratory exposure’. This study identified insecticides that would be recommended for tier II field evaluations for an integrated pest management program. Commercially formulated insecticides were applied with a thin-layer chromatography sprayer adjusted to 10.34 kPa (1.5 psi), at the recommended label concentrations in Canada. LC50 values were estimated from aliquots above and below that concentration. Spinetoram and spirotetramat were toxic at label concentrations. The label concentration for spinetoram was 34.3-fold the LC50 estimate (0.006 g L−1) and for spirotetramat the label concentration was 7.7-fold the LC50 estimate (0.03 g L−1). Clothianidin was considerably less toxic and the label concentration was 0.15-fold the LC50 estimate (2.29 g L−1). Estimates of LC50 for novaluron and chlorantraniliprole could not be established. Both materials showed slight toxicity to at least one growth stage of the predator. Novaluron, clothianidin and chlorantraniliprole should be evaluated in the field for compatibility in IPM programs. Flubendiamide was harmless to all growth stages and it is recommended for inclusion in IPM programs without additional tier II field evaluations. Field evaluations with spinetoram and spirotetramat should be pursued only if alternatives are unavailable.  相似文献   

19.
This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C4-C10 sulfonates and C5-C14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L−1 in water and 8.4 ± 0.5 ng g−1 in sediment. They were in the range 43.1-4997.2 ng g−1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log Kd) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between −1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids.  相似文献   

20.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号