首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
基于1990~2020年四平市土地利用类型数据,运用GeoSOS-FLUS模型,设定自然发展、耕地保护和生态优先三种情景,模拟不同情景下2030年四平市土地利用空间格局,同时结合InVEST模型定量分析研究区1990~2020年碳储量的时空分异特征,并探讨不同情境下土地利用变化对碳储量的影响,评估未来碳储量的潜力.结果表明:1990~2020年四平市耕地和林地分别减少了951.5 5km2和357.54km2,且以1990~2000年间的降幅最大.草地和建设用地呈增加趋势,分别增加了702.97km2和587.64km2.2030年在生态优先情景下,林地呈扩张态势,耕地有少量增加,在耕地保护情景下,耕地数量得到有效保障,而林地和草地有不同程度缩减.建设用地在三种情景下都呈现扩张的趋势,在自然发展情景下增长幅度最大.1990~2020年,四平市陆地生态系统的总碳储量及平均碳密度呈连续减少的势态,以1990~2000年的降幅最大,主要原因是该时段内土地利用变化以耕地的减少和建设用地的增加为主.四平市碳储...  相似文献   

2.

为探索生态安全格局下区域可持续发展模式,选取长株潭都市圈为研究对象,通过遥感数据识别2000—2020年建设用地变化情况,采用综合生态重要性评估模型和MCR(minimal cumulative resistance)模型构建都市圈生态安全格局,基于FLUS模型(future land use change scenario simulation model)设置自然发展(ND)、核心生态块保护(CEP)、生态安全格局约束(ESPR) 3种建设用地模拟情景,在模拟结果的基础上划定长株潭都市圈城镇开发边界。结果表明:2000—2020年长株潭都市圈建设用地扩张迅速,且由急速无序扩张转为缓速集中扩张;利用综合生态重要性评价得到极重要性生态用地共计2 649.54 km2,筛选得到生态源地共计1 204.38 km2,占研究区总面积的13.97%,并构建出长株潭都市圈综合生态安全格局;在ND、CEP、ESPR 3种情景模式下,2030年长株潭都市圈建设用地规模分别达到1 345.88、1 345.79和1 284.94 km2。基于ESPR情景划定城镇开发边界范围,可有效实现土地经济和生态效益的最大化,并为该地区的生态保护和土地利用规划提供参考。

  相似文献   

3.

评估生态系统碳储量,对区域生态管理具有重要意义。利用InVEST模型和PLUS模型,基于解译的土地利用数据和未来土地利用预测数据,研究2000-2020年漓江流域土地利用变化和碳储量时空特征,并预测未来不同发展情景下碳储量的变化。结果表明:2000-2020年漓江流域土地利用变化表现为耕地、林地和草地面积减少,水域、建设用地和未利用地面积增加;受土地利用变化的影响,2000-2020年漓江流域碳储量减少了0.945×106 t,其中2015-2020年减幅最大;碳储量高的区域主要分布在流域西北、西南及东部高海拔地区,碳储量低的区域主要分布在流域中部平原地区且2000-2020年明显扩大,流域内的临桂区、兴安县和灵川县碳储量减少较为显著。预测2030年漓江流域在自然发展情景下碳储量会进一步下降,耕地保护情景下碳储量相较自然发展情景增加0.345×106 t,生态保护情景下碳储量比自然发展情景、耕地保护情景分别增加1.540×106、1.195×106 t。耕地保护情景能够保护耕地数量,但建设用地扩张受到较大限制;生态保护情景能够增强固碳能力,但不能有效控制耕地面积的缩减。未来漓江流域国土空间规划需综合统筹生态保护和耕地保护措施,提升区域碳汇能力,实现绿色可持续发展。

  相似文献   

4.
基于FLUS模型的湖北省生态空间多情景模拟预测   总被引:19,自引:1,他引:18  
改革开放以来,中国经济在飞速发展的同时,生态环境问题日益严峻。为保障国家和地区的生态安全,对未来生态空间进行模拟预测十分必要。在长江大保护和长江经济带绿色发展背景下,以湖北省为研究区,利用FLUS模型基于湖北省2010年、2015年土地利用数据及包含自然和人文因素的15种驱动因子数据,对2035年的湖北省生态空间进行模拟预测。结果表明:利用2010年土地利用现状模拟出的2015年湖北省土地利用变化情况,总体精度达到0.976,Kappa系数达到0.961,模拟精度较高。设置的生产空间优先、生活空间优先、生态空间优先以及综合空间优化4种不同情景,基本满足未来湖北省不同发展导向的需求。从地貌单元角度来看,在不同情景下,湖北省生态空间主要分布于湖北省边陲四大山区,中部江汉平原生态空间零星分布。从数量规模上来看,不同情景下各个用地类型数量规模差异较为明显,生产空间优先情景下耕地面积增加1216 km2,生活空间优先情景下城镇用地规模增加5959 km2,生态空间优先情景下生态空间用地增长722 km2,综合空间优化情景下生态空间...  相似文献   

5.
生态退耕前后张家口市耕地变化及影响因素识别   总被引:3,自引:1,他引:3  
耕地变化与相关土地政策密切相关,为揭示生态退耕政策实施前后,耕地变化特征及其影响因素的差异性,该研究以北方农牧交错区——张家口市为例,分析了生态退耕前后(1989—2000年和2000—2015年)耕地变化特征。在此基础上,应用多项Logistic回归模型研究了耕地变化的影响因素。研究结果表明:1)耕地面积由1989年的1 090 031.02 hm2减少到2015年的924 647.32 hm2,持续减少了15.17%,特别是生态退耕后,耕地减少速度加快;但耕地仍然集中分布在张北县、康保县、沽源县。2)生态退耕前后,耕地转出与转入并存。与生态退耕前相比,生态退耕后耕地转换变化总面积增加121 695.72 hm2,其中转出面积增加占88.72%;耕地主要转换去向由草地(17 063.59 hm2)、建设用地(9 007.00 hm2)、林地(8 932.72 hm2)和园地(5 981.19 hm2),变为林地(51 902.41 hm2)、园地(40 311.23 hm2)、草地(32 292.66 hm2)和建设用地(23 152.11 hm2)。3)生态退耕前后,耕地转换变化的影响因素不同。退耕前,海拔和坡度分别是耕地转为园地、林地和转为草地、建设用地的主导因素;退耕后,耕地转化的影响因素多样化,海拔仍是耕地向园地转换的主导影响因素,人均GDP变化和到最近道路距离分别成为耕地转为林地、草地和转为建设用地的首要因素。基本农田保护区和自然保护区对耕地转为园地、林地和草地也起着重要作用。研究结果能为张家口市耕地保护、生态环境保护及经济社会协调发展提供科学依据。  相似文献   

6.
论文以江苏沿海地区1990、2000和2010年3期土地利用空间数据为基础,在GIS、地学信息图谱理论和Costanza等生态系统服务价值测算方法的支持下合成时间序列表征下的耕地利用转型图谱、耕地利用转型模式图谱和生态系统服务价值图谱,据此揭示江苏沿海地区耕地转型时空变化特征及其生态系统服务价值变化响应规律。结果表明:1)1990-2000年阶段耕地以建设用地、水域和林地占用为主,补充耕地来源除建设用地、水域和林地外,还包括了草地,耕地占用大于补充。空间差异以“耕地→建设用地”、“草地→耕地”最为明显,空间分离度低。2)2000-2010年阶段耕地占用的去向增加了未利用地,草地仍是主要的耕地补充来源。空间上以“耕地→建设用地”和“耕地→水域”图谱变化最为显著,空间分离度变大。3)1990-2010年耕地利用转型模式以后期变化最为显著。4)近20 a间,江苏沿海生态系统服务总价值由170.85×108元提升为182.23×108元,水域是提高生态系统服务价值最主要的贡献类型。耕地利用转型导致耕地的生态系统服务价值降低,“耕地→建设用地”是最主要的生态减值图谱 类型。  相似文献   

7.
中国南北过渡带生态系统碳储量时空变化及动态模拟   总被引:3,自引:0,他引:3  
山地是全球变化的敏感地带,对生态安全与发展具有重要作用,山地生态系统服务变化和生态环境承载力是地理学与生态学的研究热点。以中国南北过渡带的主体秦巴山地为研究对象,采用CA-Markov模型与InVEST模型模拟和预测(2000—2040年)不同土地利用情景下秦巴山地生态系统碳储量变化,运用热点分析(Getis-Ord Gi*)探讨秦巴山地生态系统碳储量的空间分布差异。结果表明:(1)2000—2040年,研究区土地利用/土地覆被变化主要是耕地、林地、草地和建设用地。(2)2000—2020年,碳储量增加1.12×107 t;2020—2040年自然增长情景下,碳储量损失剧烈,减少50.24×107 t;生态保护情景下,碳损失幅度明显变弱,减少29.52×107 t,说明采取生态环境保护政策,能够有效控制碳储量减少。(3)土地利用/土地覆被与生态系统碳储量的变化呈现显著的一致性,土地利用数量变化决定了生态系统碳储量的质量和空间分布格局。(4)随着海拔抬升,碳储量呈现出“先增后减”的趋势;随着坡度升高,碳储量呈现出“W”型变化趋势。(5)热点分析结果显示,2000—2020年间,碳储量热点区和冷点区零散分布在研究区内;2040年自然增长情景下,碳储量冷热点分布范围有逐渐变大的趋势;2040年生态保护情景较2020年,秦巴山地生态系统碳储量的冷热点分布范围整体变化不大。  相似文献   

8.
以贵安新区为例,将水环境安全格局与大气环境安全格局纳入城市综合生态安全格局的评价框架;将GIS空间分析技术、ArcSWAT模型、WRF-Chem空气质量模型等进行耦合,对水环境、大气环境、石漠化、生物多样性、自然人文环境以及基本农田等在内的6项生态安全格局因子进行分析;将贵安新区生态安全格局划分为底线、满意和理想3个不同等级,并在此基础上对贵安新区城市扩展方案进行模拟.结果表明,贵安新区底线级生态安全格局面积为215.6km2,满意级生态安全格局面积为473.9km2,理想级生态安全格局面积为828.4km2,分别占贵安新区总面积的11.3%,24.9%和43.6%.生态宜居的城市建设用地面积为179.8km2,生态经济均衡发展模式下城市建设用地面积为708.9km2,经济优先发展模式下城市建设用地面积为1288.9km2,分别占贵安新区总面积的9.5%,37.3%和67.8%.综合生态安全格局的划定可作为一种有力的空间管控手段,以实现城市生态环境保护与宜居城镇的和谐发展.  相似文献   

9.
以1988—2018年7期Landsat遥感卫星影像为数据源,采用土地利用转移矩阵、景观格局指数等方法探究了鄱阳湖环湖区近30年来土地利用与景观格局变化特征.结果表明:(1)近30年来鄱阳湖环湖区建设用地和林地面积显著增加,耕地、草地、水域和未利用地面积减少.(2)建设用地的转入类型以耕地为主,30年间共侵占耕地面积1243.66 km2,占建设用地面积增加量的71.19%.林地的转入类型主要为耕地和草地,其中,耕地转入占比56.95%.耕地的转出类型以建设用地、草地和林地为主,且1999年以后随着城镇化的发展耕地主要转向建设用地.(3)近30年来鄱阳湖环湖区景观总体破碎程度逐渐增大,景观斑块个数共增加63492个,增幅为11.68%.景观连通性降低,各类型土地呈均衡化趋势分布,景观异质性增加.研究结果可为推动鄱阳湖环湖区土地资源保护、生态环境保护和经济协同发展提供参考依据.  相似文献   

10.
论文以东北典型黑土区中的黑龙江省讷谟尔河流域作为研究区,以1965年的Corona 和2005年的SPOT5影像做为数据源,获取研究区1965和2005年的侵蚀沟分布数据;以地形图、Landsat/MSS影像和TM影像作为数据源,获取1954、1975、1995和2005年的土地利用数据,据此就研究区沟蚀动态和土地利用变化对沟蚀发展的影响进行分析。结果表明:40 a间侵蚀沟密度>250 m/km2的区域由1965年的0 km2增加到4 077.17 km2,占总侵蚀区面积的37.57%;侵蚀沟密度以北东—南西向为轴线从剧烈增加区逐渐过渡到微度增加区;耕地上沟蚀状况最严重,草地和沼泽地次之,林地侵蚀沟密度较小;耕地和草地之间的互相转换,侵蚀沟密度增加最大,分别为600.60和456.08 m/km2;其次是林地转变为耕地,侵蚀沟密度增加346.91 m/km2;各沟蚀变化区耕地的增加比例在29.21%~46.54%之间,草地减少的比例在27.10%~41.50%之间,沼泽地减少的比例在5.86%~12.50%之间。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号