首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

2.
《Ecological modelling》2003,164(1):33-47
This study investigated the impacts of landuse history and forest age structure on regional carbon fluxes for the forests in the Pacific Northwest of the United States based on a two-stage modeling strategy. In the first stage, an individual-based forest ecosystem carbon flux model (IntCarb) at stand scale is developed. IntCarb combines components from the ZELIG and CENTURY models to simulate forest development and heterotrophic respiration, respectively. Stand scale carbon fluxes simulated by IntCarb strongly depend on stand age. A forest stand can be a carbon sink for up to 200 years old with a peak at 30–40 years old. Old-growth stands are carbon neutral to the atmosphere in the long term. For any particular year, an old-growth stand can be either a carbon sink or source. The interannual variation of Net Ecosystem Productivity (NEP) for an old-growth stand is primarily determined by heterotrophic respiration. Due to the high spatial variability of stand ages, forest age structure needs to be taken into account to improve estimation of carbon budgets of forest ecosystems over large areas. In the stand stage, a regional carbon budget model (RegCarb) is developed to estimate regional carbon fluxes over large areas based on forest age structure, adjusting for the nonrespiratory carbon losses (timber harvesting). Our initial estimate with RegCarb for the Pacific Northwest of the United States indicates that this region was a tremendous carbon source to the atmosphere from 1890 to 1990 due to extensive logging of old-growth forest. Projection for the role of forests in this region in global carbon cycle in the future strongly depend on the amount of timber to be harvested, i.e. how the age structure of forests in this region is to be altered.  相似文献   

3.
Postfire Management on Forested Public Lands of the Western United States   总被引:1,自引:0,他引:1  
Abstract:  Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.  相似文献   

4.
Forest stand management often depends on data from a single fixed area inventory plot located at random in a forest stand. The plot provides detailed information about tree size distribution but not about per unit area tree frequency distribution unless one assumes a Poisson (POI) distribution. The POI assumption ignores any relationship between a tree's size and its demand for growing space. This study argues for the Inverse Gaussian (IG) distribution as a more realistic model. Maximum likelihood estimates of the IG parameters are obtained from a transformation of tree size data (diameter) to proxies of tree counts. Data from two stands indicated that an IG model was better at predicting the tree frequency distribution than a POI model.  相似文献   

5.
We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak-hickory forests in the region. However, MODIS underestimated NPP for less-dominant northern hardwood forests and overestimated NPP for coniferous forests. Causes of inaccurate estimates of NPP by MODIS were (1) an aggregated classification and parameterization of diverse deciduous forests in different climatic environments into a single class that averages different radiation conversion efficiencies; and (2) lack of soil water constraints on NPP for forests or areas that occur on thin or sandy, coarse-grained soil. We developed the "available soil water index" for adjusting the MODIS NPP estimates, which significantly improved NPP estimates for coniferous forests. The MODIS NPP estimates have many advantages such as globally continuous monitoring and remarkable accuracy for large scales. However, at regional or local scales, our study indicates that it is necessary to adjust estimates to specific vegetation types and soil water conditions.  相似文献   

6.
The Yellow River Delta region in China is a land area of 1,200,000 ha with rich natural resources. Adverse environmental conditions, such as low rainfall and high salinity, promote the dominance of black locust trees for afforestation. With the increase of CO2 in the atmosphere, this forest and others throughout the world have become valued for their ability to sequester and store carbon. Forests store carbon in aboveground biomass (i.e. trees), belowground biomass (i.e. roots), soils and standing litter crop (i.e. forest floor and coarse woody debris). There are well-developed methods to sample forest ecosystems, including tree inventories that are used to quantify carbon in aboveground tree biomass. Such inventories are used to estimate the types of roundwood products removed from the forest during harvesting. Based on standard plot inventories and stem analyses, carbon sequestration estimates of trees were 222.41 t ha?1 for the Yellow River Delta region accounted for 67.12% of the whole forest. Similarly, carbon storage by herbaceous matter and soil was 0.50 and 50.34 t ha?1, respectively. The results suggest that carbon sequestration in the forest ecosystem was performed by most of the forest, which plays an increasingly important role in sequestering carbon as the stand grows.  相似文献   

7.
Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60-100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.  相似文献   

8.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

9.
Understanding the effects of disturbance regimes on carbon (C) stocks and stock changes is a prerequisite to estimating forest C stocks and fluxes. Live-tree, dead-tree, woody debris (WD), stump, buried wood, organic layer, and mineral soil C stock data were collected from high-boreal black spruce (Picea mariana (Mill.) B.S.P.) stands of harvest and fire origin and compared to values predicted by the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3); the core model of Canada's National Forest Carbon Monitoring, Accounting and Reporting System. Data comparing the effect of natural and anthropogenic disturbance history on forest C stocks are limited, but needed to evaluate models such as the CBM-CFS3. Results showed that adjustments to the CBM-CFS3 volume-to-biomass conversion and partitioning parameters were required for the non-merchantable and branch C pools to accurately capture live-tree C stocks in the studied black spruce ecosystems. Accuracy of the CBM-CFS3 modelled estimates of dead organic matter and soil C pools was improved relative to regional default parameters by increased snag fall and >10 cm WD base decay rates. The model evaluation process also highlighted the importance of developing a bryophyte module to account for bryophyte C dynamics and the physical burial of woody debris by bryophytes. Modelled mineral soil C estimates were improved by applying a preliminary belowground slow C pool base decay rate optimized for the soil type of the studied sites, Humo-Ferric Podzols.  相似文献   

10.
At the regional and continental scale, ecologists have theorized that spatial variation in biodiversity can be interpreted as a response to differences in climate. To test this theory we assumed that ecological constraints associated with current climatic conditions (2000-2004) might best be correlated with tree richness if expressed through satellite-derived measures of gross primary production (GPP), rather than the more commonly used, but less consistently derived, net primary production. To evaluate current patterns in tree diversity across the contiguous United States we acquired information on tree composition from the USDA Forest Service's Forest Inventory and Analysis program that represented more than 17,4000 survey plots. We selected 2693 cells of 1000 km2 within which a sufficient number of plots were available to estimate tree richness per hectare. Our estimates of forest productivity varied from simple vegetation indices indicative of the fraction of light intercepted by canopies at 16-d intervals, a product from the MODIS (Moderate Resolution Imaging Spectro-radiometer), to 8- and 10-d GPP products derived with minimal climatic data (MODIS) and SPOT-Vegetation (Systeme Pour l'Observation de la Terre), to 3-PGS (Physiological Principles Predicting Growth with Satellites), which requires both climate and soil data. Across the contiguous United States, modeled predictions of gross productivity accounted for between 51% and 77% of the recorded spatial variation in tree diversity, which ranged from 2 to 67 species per hectare. When the analyses were concentrated within nine broadly defined ecoregions, predictive relations largely disappeared. Only 3-PGS predictions fit a theorized unimodal function by being able to distinguish highly productive forests in the Pacific Northwest that support lower than expected tree diversity. Other models predicted a continuous steep rise in tree diversity with increasing productivity, and did so with generally better or nearly equal precision with fewer data requirements.  相似文献   

11.
The scientific community, forest managers, environmental organizations, carbon-offset trading systems and policy-makers require tools to account for forest carbon stocks and carbon stock changes. In this paper we describe updates to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) implemented over the past years. This model of carbon-dynamics implements a Tier 3 approach of the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidance for reporting on carbon stocks and carbon stock changes resulting from Land Use, Land-use Change and Forestry (LULUCF). The CBM-CFS3 is a generic modelling framework that can be applied at the stand, landscape and national levels. The model provides a spatially referenced, hierarchical system for integrating datasets originating from different forest inventory and monitoring programs and includes a structure that allows for tracking of land areas by different land-use and land-use change classes. Ecosystem pools in CBM-CFS3 can be easily mapped to IPCC-defined pools and validated against field measurements. The model uses sophisticated algorithms for converting volume to biomass and explicitly simulates individual annual disturbance events (natural and anthropogenic). Several important scientific updates have been made to improve the representation of ecosystem structure and processes from previous versions of CBM-CFS. These include: (1) an expanded representation of dead organic matter and soil carbon, particularly standing dead trees, and a new algorithm for initializing these pools prior to simulation, (2) a change in the input data requirement for simulating growth from biomass to readily available merchantable volume curves, and new algorithms for converting volume to biomass, (3) improved prediction of belowground biomass, and (4) improved parameters for soil organic matter decay, fire, insect disturbances, and forest management. In addition, an operational-scale version of CBM-CFS3 is freely available and includes tools to import data in standard formats, including the output of several timber supply models that are commonly used in Canada. Although developed for Canadian forests, the flexible nature of the model has enabled it to be adapted for use in several other countries.  相似文献   

12.
森林土壤储存着全球陆地生态系统大约45%的碳,在维持全球碳平衡方面具有重要的作用。不断加剧的全球氮沉降对森林生态系统碳循环和碳吸存产生了深刻的影响,进而改变了森林生态系统的生产力和生物量积累。本文以欧洲和北美温带地区开展的有关氮沉降对森林生态系统影响的研究为基础,提炼出最可能决定加氮影响碳输入、输出效应方向和大小的因素:凋落物分解、细根周转、外生菌根真菌、土壤呼吸及可溶性有机碳淋失,并探讨了森林生态系统碳动态对氮沉降响应的不确定性。陆地生态系统碳氮循环密切相关,由于氮循环的复杂性,尽管以往碳循环研究都考虑了氮对碳循环的限制作用,但在碳氮循环耦合机理方面的研究还比较少见。在未来研究中,应通过探寻森林土壤碳氮相互作用特征,及土壤微生物、土壤酶等与土壤碳氮过程的互动机制,来增进氮沉降对森林碳储量和碳通量的理解。  相似文献   

13.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   

14.
提高碳汇潜力:量化树种和造林模式对碳储量的影响   总被引:3,自引:0,他引:3  
王春梅  王汝南  蔺照兰 《生态环境》2010,19(10):2501-2505
全球气候变化背景下,造林再造林固定的碳可以抵消温室气体减限排量。通过造林再造林增加森林面积可以增加林业碳汇,在土地面积有限的情况下,提高造林质量——在有限的造林面积上固定更多的碳是十分必要的。树种和造林模式的选择是增加森林生态系统碳汇的重要管理决策。文章综述了树种和造林模式对生态系统的碳储量的影响。树种从生物量的积累,凋落物和土壤碳储存,以及木材密度、碳贮存量等几个方面探讨其对生态系统碳库的影响。混交林能充分利用立地条件、改善树木营养状况,并且可以减少病虫害和森林火灾。同时分析了我国在森林经营方面存在的问题和改善途径,以期为该领域的研究提供参考。  相似文献   

15.
Reed SC  Cleveland CC  Townsend AR 《Ecology》2008,89(10):2924-2934
Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.  相似文献   

16.
A disturbance, such as species invasion, can alter the exchange of materials and organisms between ecosystems, with potential consequences for the function of both ecosystems. Russian olive (Elaeagnus angustifolia) is an exotic tree invading riparian corridors in the western United States, and may alter stream organic matter budgets by increasing allochthonous litter and by reducing light via shading, in turn decreasing in-stream primary production. We used a before-after invasion comparison spanning 35 years to show that Russian olive invasion increased allochthonous litter nearly 25-fold to an invaded vs. a control reach of a stream, and we found that this litter decayed more slowly than native willow. Despite a mean 50% increase in canopy cover by Russian olive and associated shading, there were no significant changes in gross primary production. Benthic organic matter storage increased fourfold after Russian olive invasion compared to pre-invasion conditions, but there were no associated changes in stream ecosystem respiration or organic matter export. Thus, estimated stream ecosystem efficiency (ratio of ecosystem respiration to organic matter input) decreased 14%. These findings show that invasions of nonnative plant species in terrestrial habitats can alter resource fluxes to streams with consequences for whole-ecosystem functions.  相似文献   

17.
郭月峰  姚云峰  秦富仓  祁伟 《生态环境》2013,(10):1665-1670
选择燕山典型流域6个林龄序列的小叶杨(Populus simonii)和5个林龄序列的山杏(Prunus sibirica)主要造林树种为研究对象,利用时间替代空间样地测量法量化退牧还林后生物量碳储量、凋落物碳储量和土壤碳储量及生态系统碳储量的变化规律,同时以各组成碳库-林龄序列中的最大碳储量之和作为生态系统饱和碳储量,以未退牧的天然草地生态系统碳储量作为初始植被类型的碳储量,分析总结了退牧还林对生态系统碳储量和碳循环的影响。结果表明,退牧还林后生态系统的生物量碳储量、凋落物碳储量基本随退牧年限的增加而增加,土壤碳储量随退牧年限的增加呈现先减小后增加的趋势。在没有人为干扰的情况下,9、15、18、22及29 a生小叶杨林的生态系统碳储量分别为7147.45、7461.67、7509.895、8468.375及8247.85 g·m^-2,9、15、18、22及26 a生山杏林的生态系统碳储量分别为6695.44、6700.82、8011.86、8001.92及7981.92 g·m^-2;9、15、18、22、29及36 a生小叶杨林的生态系统固碳潜力分别为757.08、1071.3、1119.53、2078.01、1857.48及1312.21 g·m^-2,9、15、18、22及26 a生山杏林的生态系统固碳潜力分别为310.45、1621.49、1611.55、1591.55及757.08 g·m^-2。长期来看,研究区退牧还林对提高生态系统碳汇能力是可观的、积极的。研究结果对提高造林对碳汇影响的估测能力提供数据支持,也为政府参与国际全球气候变化的谈判提供一个很好的案例研究和科学根据。  相似文献   

18.
Hobbie EA 《Ecology》2006,87(3):563-569
Ectomycorrhizal fungi form symbioses with most temperate and boreal tree species, but difficulties in measuring carbon allocation to these symbionts have prevented the assessment of their importance in forest ecosystems. Here, I surveyed allocation patterns in 14 culture studies and five field studies of ectomycorrhizal plants. In culture studies, allocation to ectomycorrhizal fungi (NPPf) was linearly related to total belowground net primary production (NPPb) by the equation NPPf = 41.5% x NPPb - 11.3% (r2 = 0.55, P < 0.001) and ranged from 1% to 21% of total net primary production. As a percentage of NPP, allocation to ectomycorrhizal fungi was highest at lowest plant growth rates and lowest nutrient availabilities. Because total belowground allocation can be estimated using carbon balance techniques, these relationships should allow ecologists to incorporate mycorrhizal fungi into existing ecosystem models. In field studies, allocation to ectomycorrhizal fungi ranged from 0% to 22% of total allocation, but wide differences in measurement techniques made intercomparisons difficult. Techniques such as fungal in-growth cores, root branching-order studies, and isotopic analyses could refine our estimates of turnover rates of fine roots, mycorrhizae, and extraradical hyphae. Together with ecosystem modeling, such techniques could soon provide good estimates of the relative importance of root vs. fungal allocation in belowground carbon budgets.  相似文献   

19.
以徐州侧柏Platycladus orientalis(Linn)Franco人工林为研究对象,运用生物量转化方程及土壤调查数据探讨了1 679、2 250和3 074株.hm-2的3种密度对生态系统碳储量的影响及其机理。结果表明,①乔木层、土壤层和生态系统的碳储量均随林分密度的增加而明显减少,灌草层碳储量在低林分密度最大,而枯落物层碳储量在中林分密度最大。低林分密度生态系统的碳储量是94.11 t.hm-2,分别是中密度和高密度生态系统的碳储量1.19倍和1.28倍,而这种差异主要是由乔木层和土壤层碳储量差异引起的。②林分密度对细根生物量的影响不显著(P〉0.05),而细根形态随林分密度的增加表现为低级根中1、2级根直径变粗,根长先变长后变短,比根长变短(P〈0.05);而高级根中的5级根直径显著变细,根长和比根长变长(P〉0.05)。③林分密度对细根生物量的影响与乔木层、土壤层和生态系统碳储量的变化规律具有较高的一致性,均为低密度下最大,高密度下最小。因此,细根生物量可能是导致系统碳储量变化的主要因素之一。  相似文献   

20.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号