首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

2.
Replicate mass-balanced solutions to Ecopath models describing carbon-based trophic structures and flows were developed for the Lake Ontario offshore food web before and after invasion-induced disruption. The food webs link two pathways of energy and matter flow: the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (bacteria-protozoans) and include 19 species-groups and three detrital groups. Mass-balance was achieved by using constrained optimization techniques to randomly vary initial estimates of biomass and diet composition. After the invasion, production declined for all trophic levels and species-groups except Chinook salmon. The trophic level (TL) increased for smelt, adult sculpin, adult alewife and Chinook salmon. Changes to ecotrophic efficiencies indicate a reduction in phytoplankton grazing, increased predation pressure on Mysis, adult smelt and alewife and decreased predation pressure on protozoans. Specific resource to consumer TTE changed; increasing for protozoans (8.0-11.5%), Mysis (0.6-1.0%), and Chinook salmon (1.0-2.3%) and other salmonines (0.4-0.5%) and decreasing for zooplankton (20.2-15.1%), prey-fish (9.7-8.8%), and benthos (1.7-0.6%). Direct trophic influences of recent invasive species were low. The synchrony of the decline in PP and species-group production indicates strong bottom-up influence. Mass balance required an increase of two to threefold in lower trophic level biomass and production, confirming a previously observed paradoxical deficit in lower trophic level production. Analysis of food web changes suggest hypotheses that may apply to other similar large pelagic systems including, (1) as pelagic primary productivity declines, overgrazing of zooplankton results in an increase in protozoan production and a loss of trophic transfer efficiency, (2) habitat and food web changes increased Mysis predation on Diporeia and contributed to their recent decline, and (3) production of Chinook salmon, the primary piscivore, was uncoupled from pelagic production processes. This study demonstrates the value of food web models to better understand the impact of invasive species and to develop novel hypotheses concerning trophic influences.  相似文献   

3.
The fate of microzooplankton production, whether it is channeled to mesozooplankton or recycled within the microbial food web, has major implications for the oceanic carbon cycle. The aim of this study was to estimate internal predation within naturally occurring microzooplankton communities. A dilution series based on the Landry and Hasset technique was created by mixing 200-μm-screened water (used as whole water) with 5-μm-screened seawater due to the dominance of pico- and small nanoplankton at our study site. This modification of the original technique allows for gradual reduction in microzooplankton abundance and thus internal predation while maintaining sufficient phytoplankton prey levels for microzooplankton growth in diluted treatments. Microzooplankton growth and mortality rates were calculated based on the changes in abundance during 24-h incubation. In the diluted treatments, microzooplankton growth rates were significantly higher (1.21 ± 0.20 day?1 for ciliates and 0.88 ± 0.05 day?1 for heterotrophic dinoflagellates) compared to those in whole seawater where microzooplankton abundance remained unchanged or even declined over time. Approximately 79 % of microzooplankton production was consumed within the microzooplankton, with aloricate ciliates being the most vulnerable to predation. These findings support the assumption that trophic interactions between microzooplankton can be an important factor controlling their production and, thus, energy transfer in picoplankton-dominated pelagic ecosystems.  相似文献   

4.
The one-dimensional theory of critical-length scales of phytoplankton patchiness is developed to include phytoplankton growth and herbivore grazing as functions of time and space. The critical-length scale L c for the pathch is then determined by the initial spatial distribution and concentration of the limiting nutrient and herbivores in addition to the daily averaged values of the growth and loss processes. The response of an initial phytoplankton patch to the stresses of turbulent diffusion, nutrient depletion, light periodicity, and nocturnal or continuous herbivore grazing is investigated numerically for several oceanic conditions. Nocturnal grazing, while less stressful on primary production than continous grazing, results in lower phytoplankton standing stocks. Increase in biomass of vertically migrating zooplankton results in a net loss of nutrient which might otherwise be egested, recycled, and utilized in the euphotic zone under continuous grazing conditions. The Ivlev constant is shown via sensitivity analysis to be a significant parameter ultimately influencing phytoplankton production. It is demonstrated numerically that diffusion of phytoplankton cells from areas of high concentration to low concentration prevents the local extinction of the standing stock, thereby rendering a positive herbivore grazing-threshold unnecessary for ecosystem stability.  相似文献   

5.
The benthic microbial food web can be responsible for a large proportion of benthic carbon cycling yet there are few data on the trophic interactions between this food web and macrobenthos. A large-scale field experiment was conducted to investigate effects of eliminating the polychaete Arenicola marina on benthic microbes (prokaryotes, heterotrophic and autotrophic protists) and metazoan meiofauna in a marine intertidal flat of the North Sea, Germany. Over a period of 2 years, quantity and composition of micro- and meiobenthos from unmanipulated sites were compared to those from sites deplete of lugworms. These grazer treatments were cross-classified with different sediment characteristics (low- and mid-intertidal areas). Lugworm removal resulted in an initial increase in abundance of prokaryotes and nanoflagellates, which became less pronounced in the second year. Ciliates were not affected quantitatively, but in the absence of lugworms, diversity and the proportion of carnivorous forms increased. Meiobenthos (nematodes, ostracods and copepods) were affected only moderately. The observed changes are probably due to a combination of release from grazing/predation pressure, changes in the species composition of higher trophic levels (namely large polychaetes) and altered environmental conditions (such as depth of the oxygenated layer and sediment grain size). Spatial differences between sites of different tidal exposure/grain size appeared to be as large as temporal differences during the 2 years following the manipulation of the system. We conclude that in intertidal sediments, indirect effects due to habitat transformation are as important as direct biological interactions (grazing pressure and competition) for the dynamics of the benthic microbial food web.  相似文献   

6.
A simulation analysis of continental shelf food webs   总被引:3,自引:0,他引:3  
Energy flow through continental shelf food webs was examined using a simulation model. The model structure expands the two traditional marine food chains of phytoplankton-zooplankton-pelagic fish and benthos-demersal fish into a complex web which includes detritus, dissolved organic matter (DOM), bacteria, protozoa, and mucus net feeders. Simulation of energy flux for different shelf systems using the expanded web revealed that heterotrophic microorganisms and their predators account for a significant component of the energy flux in the continental shelf ecosystem. Contrary to previous models, where all phytoplankton were considered to be grazed by zooplankton, our simulation results indicate that only slightly more than 50% of the annual net primary production is grazed. A substantial quantity of the phytoplankton production directly becomes detritus. Bacteria mineralize detritus and DOM produced by phytoplankton and other components of the food web, converting these to biomass with high efficiency. Consequently, the model predicts that planktonic bacterial production is equivalent to zooplankton production. Exclusion of the bacteria requires the assumption that all DOM is either exported from the system or consumed by another component of the food web. Neither of these assumptions can be supported by present knowledge of the dynamics of DOM in the sea. Model simulations were also employed to test the hypothesis that production exceeds consumption on continental shelves, resulting in exports of 50% of the annual primary production. Simulations of shelves with high rates of primary production resulted in a particulate export of 27% and realistic estimates of secondary production. Results of other simulations suggest that shelves with lower primary production cannot export production and still maintain the macrobenthos and their predators. General properties about continental shelves can also be inferred from the model. From simulations of shelves of differing primary production, nanoplankton are predicted to account for a greater proportion of the primary production in nutrient limited systems. Benthic production appears to be related to both the quantity of primary production and the sinking rates of the phytoplankton. The model indicates that zooplankton fecal inputs to the shelf benthos are only a small portion of the total detrital flux, leading to the prediction that fecal pellets are of little significance in determining benthic production. Finally, the model generates production efficiencies that are highly variable depending on the type of system and kind of populations involved. We argue that the assumed ecological efficiency of 10% should be abandoned for continental shelves and other ecosystems.  相似文献   

7.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

8.
Vargas CA  Escribano R  Poulet S 《Ecology》2006,87(12):2992-2999
Recruitment success at the early life stages is a critical process for zooplankton demography. Copepods often dominate the zooplankton in marine coastal zones and are prey of the majority of fish larvae. Hypotheses interpreting variations of copepod recruitment are based on the concepts of "naupliar predation," "nutritional deficiency," and "toxic effect" of diatom diets. Contradictory laboratory and field studies have reached opposite conclusions on the effects of diatoms on copepod reproductive success, blurring our view of marine food-web energy flow from diatoms to higher consumers by means of copepods. Here we report estimates of copepod feeding selectivity and reproduction in response to seasonally changing phytoplankton characteristics measured in a highly productive coastal upwelling area off the coast of central Chile. The variable phytoplankton diversity and changing food quality had a strong and highly significant impact on the feeding selectivity, reproduction, and larval survival of three indigenous copepod species. Seasonal changes in copepod feeding behavior were related to the alternating protozoan-diatom diets, mostly based on dinoflagellates and ciliates during winter and autumn (low highly unsaturated fatty acids [HUFA]/polyunsaturated fatty acids [PUFA] availability), but switched to a diet of centric and chain-forming diatoms (high HUFA/PUFA availability) during the spring/summer upwelling period. Ingestion of diatom cells induced a positive effect on egg production. However, a negative relationship was found between egg hatching success, naupliar survival, and diatom ingestion. Depending on the phytoplankton species, diets had different effects on copepod reproduction and recruitment. In consequence, it seems that the classical marine food web model does not apply to some coastal upwelling systems.  相似文献   

9.
Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.  相似文献   

10.
A plankton food web model is analysed using interaction parameter values appropriate to the upper mixed layer of the high latitude oceans. The dynamics of this four-variable system are analysed in terms of the dynamics of much simpler two-variable predator–prey subsystems. Thus, the food web's robust, periodic, four-dimensional dynamics are explained by means of two-dimensional spirals and limit cycles. These dynamical subsystems are coupled by means of an omnivore that transfers control of the dynamics between the two predator–prey subsystems. The food web may substantially decouple the predator–prey subsystems so that the oscillating phytoplankton/zooplankton blooms exhibit population collapses when bacterial ‘breathers’ briefly dominate after growing dramatically from low background levels. This regular bloom/breather behaviour becomes benignly chaotic when the system is mildly forced by the annual cycle of the sun's irradiance.  相似文献   

11.
Food and predators affect egg production in song sparrows   总被引:5,自引:0,他引:5  
Zanette L  Clinchy M  Smith JN 《Ecology》2006,87(10):2459-2467
Although the possibility that food and predators may interact in limiting avian populations has long been recognized, there have been few attempts to test this experimentally in the field. We conducted a manipulative food addition experiment on the demography of Song Sparrows (Melospiza melodia) across sites that varied in predator abundance, near Victoria, British Columbia, Canada, over three consecutive breeding seasons. We previously showed that food and predators had interactive effects on annual reproductive success (young fledged per female). Here, we report the effects on egg production. Our results show that food limits the total number of eggs laid over the breeding season ("total egg production") and that interactive food and predator effects, including food effects on nest predation, determine how those eggs are "parceled out" into different nests. Food addition alone significantly affected total egg production, and there was no significant interannual variability in this result. At the same time, both food and predators affected the two determinants of total egg production: "clutch number" (total number of clutches laid) and average clutch size. Both clutch number and size were affected by a food x predator x year interaction. Clutch number was lower at low-predator locations because there was less nest predation and thus less renesting. Food addition also significantly reduced nest predation, but there was significant interannual variation in this effect. This interannual variation was responsible for the food x predator x year interactions because the larger the effect of food on nest predation in a given year, the smaller was the effect of food on clutch number; and the smaller the effect of food on clutch number, the larger was the effect of food on clutch size. Potential predator and year effects on total egg production were thus cancelled out by an inverse relationship between clutch number and clutch size. We suggest that combined food and predator effects on demography could be the norm in both birds and mammals.  相似文献   

12.
Bacterioplankton were studied in the euphotic zone of the Southern California Bight, USA, with special attention to biological factors affecting bacterial distribution and activity. Measurements were made of bacterial abundance, thymidine incorporation into acid insoluble material, primary production (particulate and dissolved), chlorophyll, phaeopigments, total microbial ATP, particulate organic carbon and nitrogen, dissolved organic carbon, dissolved primary amines, and glucose and thymidine turnover rates. The data were analyzed by pairwise rank correlations with significance tested at the P<.005 level. Bacterial abundance and thymidine incorporation both declined progressively with increasing distance from shore (to 100 km); similar trends occurred for the phytoplankton, with several stations having subsurface maxima. Bacterial abundance, thymidine incorporation, and thymidine and glucose turnover rates were all significantly correlated to each other, suggesting they are comparable as relative measures of bacterial activity. Thymidine incorporation per cell, an indicator of specific growth rate, was not correlated to bacterial abundance, suggesting density independent specific growth rates. Bacterioplankton growth rate was evidently influenced more by the standing stock of phytoplankton than by the primary production of the phytoplankton. Thus, bacterial growth may possibly be stimulated by leakage of dissolved organic matter not so much from healthy photosynthesizing cells as from phytoplankton being disrupted and incompletely digested during predation by the zooplankton and nekton.  相似文献   

13.
Mussel culture in coastal environments relies on the availability of food of sufficient quality and quantity. Both to determine this availability and to examine impacts that this aquaculture practice may have on the environment, it is important to have good knowledge of the type of plankton communities present in aquaculture sites. It is usually thought that phytoplankton make up the bulk of mussel diet in many of these sites. Here we show that the Grande-Entrée lagoon [Magdalen Islands, Gulf of St Lawrence (GSL), Canada], where commercial mussel culture has been on-going since 1980, differs from this pattern. Heterotrophic protists dominate for most of the summer-early fall season (apart from short diatom bursts), with a high average biomass of 160 mg C m−3. The dominance of small-sized phytoplankton cells (notably green algae), low nutrient concentrations (e.g. 0.3 μM NO3 on average) and high biomass of heterotrophic protists (mostly naked ciliates and tintinnids) all point to the importance of the microbial food web in this shallow marine environment. Sustained cultivation of suspended mussels in the lagoon suggests that these heterotrophic protists could be an important source of food for the mussels, supplementing the small amount of phytoplankton present.  相似文献   

14.
Kimbro DL 《Ecology》2012,93(2):334-344
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.  相似文献   

15.
周伟华  殷克东 《生态环境》2005,14(3):434-438
近年来随着臭氧损失现象日益严重,到达地球表面的紫外线B辐射不断加强,海洋生态系统受到了前所未有的威胁。UV-B的增强改变了生物体赖以生存的水体环境,影响了浮游植物对营养盐的吸收同化,抑制了浮游植物的光合作用,从而减少了海洋对CO2的吸收能力,其结果直接增加了温室效应。同时UV-B也直接影响生态系统食物链的各个营养级,伤害海洋病毒、细菌和浮游植物,降低浮游动物和仔稚鱼的成活率,进而影响到整个海洋生态系统的结构和功能。  相似文献   

16.
A one year field study of four stations in the Gulf of Bothnia during 1991 showed that the biomass was ca. two times, and primary productivity ca. four times, lower in the north (Bothnian Bay) than in the south (Bothnian Sea) during the summer. Nutrient addition experiments indicated phosphorus limitation of phytoplankton in the Bothanian Bay and the coastal areas in the northern Bothnian Sea, but nitrogen limitation in the open Bothanian Sea. A positive correlation between the phosphate concentration and the production/biomass ratio of phytoplankton was demonstrated, which partly explained the differences in the specific growth rate of the phytoplankton during the summer. Differences in photosynthetic active radiation between the stations also showed a covariation with the primary productivity. The relative importance of nutrient or light limitation for photosynthetic carbon fixation could not, however, the conclusively determined from this study. Marked differences in phytoplankton species composition from north to south were also observed. The number of dominating species was higher in the Bothnian Sea than in the Bothnian Bay. The distribution of some species could be explained as due to nutrient availability (e.g. Nodularia spumigena, Aphanizomenon sp.), while salinity probably limits the distribution of some limnic as well as marine species. The potentially toxic phytoplankton N. spumigena, Dinophysis acuminata and Chrysochromulina spp. were common in the Bothnian Sea but not in the Bothnian Bay. The pico- and nanoplankton biomass during late summer was higher than previously reported due to a revised carbon/volume ratio.  相似文献   

17.
The Humboldt squid is an important predator in the pelagic ecosystem of the central Gulf of California and the commercial catch of this species has increased over the past decade, probable due to a decrease of several top predators (sharks, large pelagic fish and the marine mammals) and the optimal feeding conditions in this area. Its high abundance and important position in the pelagic food web was quantified through two trophic models of the pelagic ecosystem of the central Gulf of California. Models represented conditions in 1980 and 2002, to document the decadal changes in ecosystem structure and function. The models were composed of 18 functional groups, including marine mammals, birds, fish, mollusks, crustaceans, and primary producers. Model results show direct negative effects on principal prey groups such as myctophids and pelagic red crab and positive effects on sharks, marine mammals and specifically sperm whales. It thus appears that the jumbo squid has an important role in the ecosystem and plays a central part in the overall energy flow as main food item for most top predators, and due to its predation of organisms on lower tropic levels.  相似文献   

18.
The spring bloom in seasonally stratified seas is often characterized by a rapid increase in photosynthetic biomass. To clarify how the combined effects of nutrient and light availability influence phytoplankton composition in the oligotrophic Gulf of Aqaba, Red Sea, phytoplankton growth and acclimation responses to various nutrient and light regimes were recorded in three independent bioassays and during a naturally-occurring bloom. We show that picoeukaryotes and Synechococcus maintained a “bloomer” growth strategy, which allowed them to grow quickly when nutrient and light limitation were reversed. During the bloom picoeukaryotes and Synechococcus appeared to have higher P requirements relative to N, and were responsible for the majority of photosynthetic biomass accumulation. Following stratification events, populations limited by light showed rapid photoacclimation (based on analysis of cellular fluorescence levels and photosystem II photosynthetic efficiency) and community composition shifts without substantial changes in photosynthetic biomass. The traditional interpretation of “bloom” dynamics (i.e., as an increase in photosynthetic biomass) may therefore be confined to the upper euphotic zone where light is not limiting, while other acclimation processes are more ecologically relevant at depth. Characterizing acclimation processes and growth strategies is important if we are to clarify mechanisms that underlie productivity in oligotrophic regions, which account for approximately half of the global primary production in the ocean. This information is also important for predicting how phytoplankton may respond to global warming-induced oligotrophic ocean expansion.  相似文献   

19.
Two important issues in the studies of harmful algae include ecological role of the toxic compounds and their fate through the food web. The aims of this study were to determine whether the production of domoic acid is a strategy evolved to avoid predation and the role of copepods in the fate of this toxic compound through the food web. The copepod Acartia clausi was fed with single and mixed cultures of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia delicatissima. Ingestion rate as a function of diatom abundance was the same for the toxic and non-toxic Pseudo-nitzschia species, indicating no selective feeding behaviour against P. multiseries. The toxins ingested by the copepods did not affect mortality, feeding behaviour, egg production and egg hatching of the copepods. Copepods assimilated the 4.8% of the total domoic acid ingested. Although the amount of toxins daily detoxificated by the copepods was 63.6%, the copepods accumulated domoic acid in their tissues. We conclude that domoic acid is not toxic for copepods and, probably for this reason, this toxin does not act as feeding deterrent for copepods. However, even though the production of domoic acid has apparently not evolved to deter predation, copepods may play an important role on the fate of this toxic compound through the marine food web.  相似文献   

20.
Navarrete SA  Manzur T 《Ecology》2008,89(7):2005-2018
Investigating how food supply regulates the behavior and population structure of predators remains a central focus of population and community ecology. These responses will determine the strength of bottom-up processes through the food web, which can potentially lead to coupled top-down regulation of local communities. However, characterizing the bottom-up effects of prey is difficult in the case of generalist predators and particularly with predators that have large dispersal scales, attributes that characterize most marine top predators. Here we use long-term data on mussel, barnacle, limpet, and other adult prey abundance and recruitment at sites spread over 970 km to investigate individual- and population-level responses of the keystone intertidal sunstar Heliaster helianthus on the coast of Chile. Our results show that this generalist predator responds to changes in the supply of an apparently preferred prey, the competitively dominant mussel Perumytilus purpuratus. Individual-level parameters (diet composition, per capita prey consumption, predator size) positively responded to increased mussel abundance and recruitment, whereas population-level parameters (density, biomass, size structure) did not respond to bottom-up prey variation among sites separated by a few kilometers. No other intertidal prey elicited positive individual predator responses in this species, even though a large number of other prey species was always included in the diet. Moreover, examining predator-prey correlations at approximately 80, 160, and 200 km did not change this pattern, suggesting that positive prey feedback could occur over even larger spatial scales or as a geographically unstructured process. Thus individual-level responses were not transferred to population changes over the range of spatial scales examined here, highlighting the need to examine community regulation processes over multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号