共查询到18条相似文献,搜索用时 62 毫秒
1.
针对难处理垃圾渗滤液,详细研究了微波/Fenton化学氧化/混凝工艺及其之间的协同作用。结果表明,该法能有效处理高浓度垃圾渗滤液,在H2O2和Fe^2+用量分别为3.0g·L^-1和0.12g·L^-1,混凝剂PMSi用量为40mg·L^-1,微波功率800W,共辐射2m in的最佳条件下,浊度、色度和CODCr去除率分别高达98.02%、97.33%和89.91%。 相似文献
2.
Fenton氧化法深度处理垃圾渗滤液的试验研究 总被引:1,自引:0,他引:1
采用Fenton氧化法对经生化处理后的垃圾渗滤液进行深度处理。结果表明,Fenton反应最佳工艺条件:初始pH值为3,H2O2加入量为3.0mL/L,FeSO4.7H2O加入量为3.5g/L,反应时间120min。生化处理后的垃圾渗滤液经Fenton氧化法深度处理后,CODCr由处理前的300mg/L,降至处理后的93mg/L,去除率达69.0%,出水水质达到新修订的《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准。 相似文献
3.
混凝—Fenton—SBR处理垃圾渗滤液的影响因素研究 总被引:15,自引:0,他引:15
介绍了用化学,生物法混合处理垃圾渗滤液的实验研究。考察了不同反应条件对处理效果的影响,试验结果表明,经过混凝预处理后,Fenton试剂能氧化降解垃圾渗滤液中大部分难生化降解的有机物,无机物,SBR能进一步提高出水水质,使废水达标排放。同时,给出了各反应过程的最佳反应条件。 相似文献
4.
5.
6.
7.
文章以北京市北神树垃圾填埋场渗滤液为研究对象,采用新型的混凝-膜处理工艺,通过正交试验研究影响混凝效果的各种因素和参数,选择合理的混凝剂和膜片,确定了最佳的垃圾渗滤液处理工艺流程。结果表明,经该工艺处理后,垃圾渗滤液由浑浊的褐黄色变为清澈透明,由腐臭味变为无异味,COD和浊度分别由2074mg/L和130NTU下降为116mg/L和0NTU,去除率分别达到94.4%和100%,色度由1024倍变为无色,达到了"生活垃圾卫生填埋场污染控制标准"(GB16889-1997)的二级排放标准。 相似文献
8.
聚铁混凝-Fenton法-SBR工艺对成熟垃圾场渗滤液深度处理的研究 总被引:2,自引:1,他引:2
联合运用聚铁混凝、Fenton方法以及SBR牛物法3种工艺对老龄垃圾场的渗滤液进行深度处理.在综合考虑出水符合垃圾渗滤液国家一级排放标准以及运行成本经济性的前提下,在进水主要污染物COD为640 mg·L-1、色度为500的条件下,推荐了聚铁混凝反应及Fenton反应的最优条件:聚铁加药量为0.45 mL·L-1,[Fe2 ]投加量为0.006 mol,[H2O2]投加量为0.006 mol.L-1,反应时间4 h,Na2CO3投加量约为0.7 g·L~,0.1%PAM投加量为2 mL·L-1,出水COD为68 mg·L-1,BOD为20mg.L-1.同时研究证明,在Fenton方法之前使用聚铁混凝法具有大幅度降低成本、省却pH调节步骤的优点.聚铁混凝反应及Fenton反应总药剂成本低于3.2元/t,实用价值高.Fenton反应后使用SBR生物法处理,其出水水质:COD≤80 mg·L-1.BOD≤8mg.L-1,,NH 4-N≤3 mg.L-1.色度≤5倍,SS≤10 mg·L-1.符合垃圾渗滤液国家一级排放标准. 相似文献
9.
10.
采用微波(MW)-活性炭(AC)强化过硫酸盐(PS)氧化处理垃圾渗滤液,研究不同因素对垃圾渗滤液处理的影响,比较不同组合工艺对渗滤液处理的效果及活性炭的多次使用情况.结果表明,COD和氨氮(NH4+-N)的去除率随着AC用量、PS用量(S2O82-:12COD0)、MW功率和辐射时间的增加而增大,pH值对COD的去除影响不明显,NH4+-N在碱性条件下得到更理想的去除效果;在活性炭用量为10g/L,PS用量为S2O82-:12COD0=1.2,pH=9,MW功率和辐射时间分别为500W和10min时,垃圾渗滤液中的COD和NH4+-N去除率分别为78.2%和67.2%,BOD5/COD由0.17增至0.38;不同工艺对垃圾渗滤液处理效果显示,MW-AC-PS工艺对垃圾渗滤液中COD和氨氮去除率明显高于其他处理,且MW、AC和PS之间存在协同效应,MW热效应显著;活性炭四次实验后,COD和NH4+-N的去除率分别为61.2%和46.1%. 相似文献
11.
电化学氧化与厌氧技术联用处理垃圾渗沥水 总被引:13,自引:0,他引:13
采用电化学氧化与上流式厌氧污泥床(UASB)结合技术,提出了处理香港垃圾渗沥水的二步法工艺.对含COD和NH3-N分别为4750mg/L和1310mg/L的垃圾渗沥水,首先进行UASB预处理(消化温度37℃,COD负荷0.78g/(L·d),HRT为6.1d),获得了66%的COD去除率;UASB的出水被引入电化学氧化反应器进行深度处理.在外加Cl 2000mg/L,电流密度为32.3mA/cm2的条件下,经6h的电解间接氧化,COD和NH3-N的去除率分别达到87%和100%,出水的COD为209mg/L,并且不含NH3-N,此过程的COD电能消耗<55kW·h/kg.本文讨论了电化学氧化过程中电极反应原理,各实验参数对COD和NH3-N去除率的影响,以及电能消耗与运行成本评估等. 相似文献
12.
城市生活垃圾处理过程中所产生的垃圾渗滤液,难降解有机物、氨氮含量高,采用生物法和膜法进行垃圾渗滤液深度处理均有一定的局限性,因此关于高级氧化工艺深度处理垃圾渗滤液的研究越来越多。将UV/PS体系应用于处理垃圾渗滤液生化出水的研究中,课题组前期研究已表明单独UV/PS体系处理垃圾渗滤液的处理效率有待提高,因此先考察了单独混凝工艺处理垃圾渗滤液生化出水的最佳反应条件以及处理效果,然后将混凝工艺与UV/PS体系相耦合,研究了耦合工艺处理渗滤液生化出水的静态实验、动态运行的处理效果,实验发现耦合工艺能提高处理效果、缩短反应时间,且采用间歇运行效果最好。 相似文献
13.
电化学氧化法处理高浓度垃圾渗滤液的研究 总被引:24,自引:0,他引:24
实验利用电化学氧化法法除垃圾渗滤液中部分难降解有机物,以提高废水的可生化性,为后续生物处理创造条件。系统考察了温度、极板间距、氧离子浓度、pH值等因素对电化学处理垃圾渗滤液效果的影响,并通过GC-MS分析,探讨渗滤中有机污染物的去除情况,包括渗滤液中典型有毒难降解有机化合物的电化学氧化结果。结果表明:温度升高,COD和NH2-N的去除率均提高;极板间距太大或太小都会降低去除效果,极板间距10mm,处理效果较好,COD和NH3-N去除率分别达到86%和100%;随着渗滤液中Cl^-浓度的增加,COD去除率明显提高,同时高浓度Cl^-和较高的电流密度对垃圾渗滤液中难降解有机污染物的处理有相当强的协同作用效应,可以明显提高处理效果;在强酸性和强碱性条件下的电化学反应都不利于对COD、NH3-N的去除;在添加Cl^-4000mg/L,极板间距为10mm,电流密度为15A/dm^2,pH为8,初始温度为50℃的条件下,经4h的电化学氧化,COD、氨氮和色度的去除率分别达88%、100%和98%,苯酚的去除率为82%,电流效率可达84%以上。可见电化学氧化法不仅可有效的去除COD、氨氮、色度,而且对有毒的难降解有机污染物(苯酚等)有很好的去除作用,采用电化学氧化作为垃圾渗滤液废水处理的前处理,可大大改善后续生物处理的效果。 相似文献
14.
《环境科学与技术》2015,(8)
采用连续式超临界水氧化小试装置处理垃圾渗滤液,以双氧水作为氧化剂,研究了超临界水氧化反应的温度、压力、氧化剂比例K和催化剂等因素对渗滤液中污染物去除效果的影响,结果表明在不同温度、不同压力、不同K值单因素实验条件下,温度480℃,压力26 MPa,K=3.0是处理垃圾渗滤液的最佳工艺参数。试验加入催化剂能够提高COD和氨氮去除率,当Cu2+浓度为45 mg/L时,垃圾渗滤液中COD和氨氮去除率分别达到78.9%和38.8%。正交试验表明,主要的工艺参数中温度对处理效率的影响最大,其次是氧化剂比例K,压力影响最小。试验结果的氨氮去除率相对较低,这可能是由于垃圾渗滤液水质复杂,各污染物之间存在相互干扰,氨氮的去除机理还有待进一步的深入研究。 相似文献
15.
脱氮-混凝气浮-UASB-接触氧化法处理垃圾填埋渗滤液 总被引:6,自引:0,他引:6
采用脱氮—混凝气浮—UASB—接触氧化工艺处理高氨氮、高浊度的垃圾渗滤液,使处理后出水的各项指标完全达到国家《污水综合排放标准》(GB8978—1996)二级新扩改标准。对废水处理系统的工艺作了简单介绍,并对系统的调试、运行过程进行了技术总结。 相似文献
16.
垃圾渗沥液的湿式催化氧化技术处理试验研究 总被引:4,自引:0,他引:4
采用200I/d CWO小型工业试验装置对垃圾渗沥液进行处理试验研究,结果表明CWO技术装置对垃圾渗沥液(CODCr13377-1955lmg/L、NH3-N1730-1911mg/L)具有良好的净化处理作用。在270℃、9MPa的条件下,该渗沥液经处理后(催化反应时间40-60min),其中CODCr、NH3-N的去除率可达99%以上,处理水中的CODCr浓度可低于150mg/L、NH3-N浓度可低于0.5mg/L,两项综合达到二级排放标准值,而且脱色除臭效果良好。 相似文献
17.
18.
为解决垃圾渗滤液中高浓度污染物对微生物的毒性抑制、生物处理出水有机物或氮不达标及投加碳源成本高的问题,采用UASB(上流式厌氧污泥床)-A/O(缺氧/好氧)反应器-ANAMMOXR(厌氧氨氧化反应器)工艺,通过短程硝化-ANAMMOX(厌氧氨氧化)深度处理实际垃圾渗滤液与生活污水混和液(体积比为1∶10),其ρ(CODCr)、ρ(NH4+-N)和ρ(TN)分别为(750±30)(290±10)和(300±10)mg/L,试验共进行90 d. 结果表明:CODCr、NH4+-N和TN的去除率分别为88%±1%、95%±1%和91%±1%,最终出水质量浓度分别为(67±5)(15±2)和(35±5)mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. A/O反应器中的ρ(FA)(FA为游离氨)在0.21~1.38 mg/L之间,可抑制NOB(硝酸细菌),使AOB(氨氧化细菌)成为优势菌种,从而实现并维持NO2--N积累率(70%~96%)较高的短程硝化,继而在ANAMMOXR中通过ANAMMOX去除残余NH4+-N和NO2--N,实现系统对氮的深度去除. 相似文献