首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Personal exposures and microenvironmental concentrations of benzene were measured in the residential indoor, residential outdoor and workplace environments for 201 participants in Helsinki, Finland, as a component of the EXPOLIS-Helsinki study. Median benzene personal exposures were 2.47 (arithmetic standard deviation (ASD)=1.62) μg m−3 for non-smokers, 2.89 (ASD=3.26) μg m−3 for those exposed to environmental tobacco smoke in any microenvironment and 3.08 (ASD=10.04) μg m−3 for active smokers. Median residential indoor benzene concentrations were 3.14 (ASD=1.51) μg m−3 and 1.87 (ASD=1.93) μg m−3 for environments with and without tobacco smoke, respectively. Median residential outdoor benzene concentrations were 1.51 (ASD=1.11) μg m−3 and median workplace benzene concentrations were 3.58 (ASD=1.96) μg m−3 and 2.13 (ASD=1.49) μg m−3 for environments with and without tobacco smoke, respectively. Multiple step-wise regression identified indoor benzene concentrations as the strongest predictor for personal benzene exposures of those not exposed to tobacco smoke, followed sequentially by time spent in a car, time in the indoor environment, indoor workplace concentrations and time in the home workshop. Relationships between indoor and outdoor microenvironment concentrations and personal exposures showed considerable variation between seasons, due to differences in ventilation patterns of homes in these northern latitudes. Automobile use-related activities were significantly associated with elevated benzene levels in personal and indoor measurements when tobacco smoke was not present, which demonstrates the importance of personal measurements in the assessment of exposure to benzene.  相似文献   

2.
The intake fraction (iF) gives a measure of the portion of a source's emissions that is inhaled by an exposed population over a defined period of time. This study examines spatial and population-based iF distributions of a known human carcinogen, benzene, from a ubiquitous urban source, local vehicular traffic, in the Helsinki Metropolitan Area using three computational methods. The first method uses the EXPAND model (EXPosure to Air pollution, especially to Nitrogen Dioxide and particulate matter), which incorporates spatial and temporal information on population activity patterns as well as urban-scale and street canyon dispersion models to predict spatial population exposure distributions. The second method uses data from the personal monitoring study EXPOLIS (Air Pollution Exposure Distributions of Adult Urban Populations in Europe) to estimate the intake fractions for individuals in the study. The third method, a one-compartment box model provides estimates within an order-of-magnitude or better for non-reactive agents in an urban area. Population intake fractions are higher using the personal monitoring data method (median iF 30 per million, mean iF 39 per million) compared with the spatial model (annual mean iF 10 per million) and the box model (median iF 4 per million, mean iF 7 per million). In particular, this study presents detailed intake fraction distributions on several different levels (spatial, individual, and generic) for the same urban area.  相似文献   

3.
There is a lack of data for health risk assessment of long term personal exposure to certain ubiquitous air pollutants present particularly in urban atmospheres. The relationship between ambient background concentrations and personal exposure is often unknown. A pilot campaign to measure indoor concentrations, outdoor concentrations and personal exposure to benzene, formaldehyde and acetaldehyde was conducted in a medium sized French town. A strong contribution to total personal exposure was observed from indoor sources, especially for formaldehyde and acetaldehyde, suggesting that indoor sources are dominant for these compounds. For benzene, the average personal exposure exceeded a 10 μgm?3 limit value, although this was not the case for the ambient background concentration. For formaldehyde, the limit level was also exceeded. Observations suggest that true personal exposure cannot be determined directly from measurements pertaining from fixed ambient background monitoring stations. It is hoped that this will be taken into consideration by the bodies responsible for monitoring air pollution and the future European Air Quality Directive.  相似文献   

4.
5.
6.
The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3–6 yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24 h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6 mg m−3) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3 mg m−3). The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (−0.03–−0.12 to 0.13–0.16) with increasing averaging times from 1 to 8 h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites.  相似文献   

7.
Exposure models are needed for comparison of scenarios resulting from alternative policy options. The reliability of models used for such purposes should be quantified by comparing model outputs in a real situation with the corresponding observed exposures. Measurement errors affect the observations, but if the distribution of these errors for single observations is known, the bias caused for the population statistics can be corrected. The current paper does this and calculates model errors for a probabilistic simulation of 48-hr fine particulate matter (PM2.5) exposures. Direct and nested microenvironment-based models are compared. The direct model requires knowledge on the distribution of the indoor concentrations, whereas the nested model calculates indoor concentrations from ambient levels, using infiltration factors and indoor sources. The model error in the mean exposure level was <0.5 microg m(-3) for both models. Relative errors in the estimated population mean were +1% and -5% for the direct and nested models, respectively. Relative errors in the estimated SD were -9% and -23%, respectively. The magnitude of these errors and the errors calculated for population percentiles indicate that the model errors would not drive general conclusions derived from these models, supporting the use of the models as a tool for evaluation of potential exposure reductions in alternative policy scenarios.  相似文献   

8.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

9.
Ambient levels of carbonyls were measured at the University of Mexico campus, Mexico City. Only formaldehyde and acetaldehyde were measured, since aldehydes with higher molecular weight were not detected. The most abundant aldehyde was formaldehyde, with an overall ratio CH3CHO/H2CO of 0.43. Maximum concentrations occurred for formaldehyde at 10:00 h while for acetaldehyde at 8:00 h. Comparing the concentration measured in this work with those in urban areas it was found that the formaldehyde and acetaldehyde levels in Mexico City are among the highest reported in the literature.  相似文献   

10.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

11.
A great number of studies on the ambient levels of formaldehyde and other carbonyls in the urban rural and maritime atmospheres have been published because of their chemical and toxicological characteristics, and adverse health effects. Due to their toxicological effects, it was considered necessary to measure these compounds at different sites in the metropolitan area of Mexico City, and to calculate the total rate of photolytic constants and the photolytic lifetime of formaldehyde and acetaldehyde. Four sites were chosen. Sampling was carried out at different seasons and atmospheric conditions. The results indicated that formaldehyde was the most abundant carbonyl, followed by acetone and acetaldehyde. Data sets obtained from the 4 sites were chosen to calculate the total rate of photolysis and the photolytic lifetime for formaldehyde and acetaldehyde. Maximum photolytic rate values were obtained at the maximum actinic fluxes, as was to be expected.  相似文献   

12.
Atmospheric levels of formaldehyde and acetaldehyde as well as their diurnal and seasonal variations were investigated from 1994 to 1997 in downtown Rome during sunny and wind calm days. Hourly concentrations of formaldehyde ranged from 8 to 28 ppbV in summer and 7 to 17 ppbv in winter; acetaldehyde concentrations varied correspondingly within the 3–18 and 2–7 ppbv intervals. Percentages of both aldehydes photochemically produced were estimated through a simple relationship based upon the comparison of individual ratios of formaldehyde and acetaldehyde to toluene in ambient air and automobile emission. Photochemical production was found to weigh upon atmospheric levels for 80–90% in summer days. It dropped below 35% in the winter period, when direct emission from traffic largely predominated. Photochemical summer source was more efficient for acetaldehyde than for formaldehyde, especially in the early morning. The importance of formaldehyde as the major source of hydroxyl radicals in Rome was also assessed.  相似文献   

13.
222Rn concentrations in the air in Nerja Cave (Spain) have been measured over 4 yr and at four sampling points. Concentrations average 168 Bq m-3 in the spring–summer when the temperature lapse rate provides a stable cave atmosphere. In the autumn–winter, the radon levels decrease to 48 Bq m-3. 222Rn flux has also been measured for soils in the cave, with an average value of 34 × 10-3 Bq m-2 s-1. The average natural flow rate in the spring–summer is about 0.70 m3 s-1 and the autumn–winter is approximately 3.6 m3 s-1 determined over 1992–1995. The radiation exposure levels for workers and tourists represent only a low percentage of the exposure guides for the general population.  相似文献   

14.
Environmental Science and Pollution Research - Chipboard production is a source of ambient air pollution. We assessed the spatial variability of outdoor pollutants and residential exposure of...  相似文献   

15.
The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

16.
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

17.
This paper describes the designs of three recent microenvironmental studies of personal exposure to carbon monoxide (CO) from motor vehicle exhaust. These studies were conducted sequentially, first in four California cities (Los Angeles, Mountain View, Palo Alto, and San Francisco), then in Honolulu, and, most recently, in metropolitan Washington, D.C. Though study purposes differed, each study faced common methodological issues related to personal exposure monitors (PEMs), quality assurance and data collection procedures, and the selection of microenvironments for study.Two major objectives of the California cities study were to determine the CO concentrations typically found in commercial settings and to define and classify microenvironments applicable to such settings: The Honolulu study measured merchant exposure to CO in shopping centers attached to semienclosed parking garages during business hours and commuter exposure to CO in vehicles (passenger cars and buses) on congested roadways during peak periods. The intent of the Washington study was to develop a model of commuter exposure to motor vehicle exhaust using CO as an indicator pollutant.Certain trends are discernible from reviewing the three studies. There are clearly trends in PEM development that have expanded instrument capabilities and automated data collection and storage. There are also trends towards more rigorous quality assurance procedures and more standardized protocols for collecting exposure data. Further, one can see a trend towards more elaborate indicators for identifying microenvironments for study. Finally, there is a trend towards using personal monitors in public policy review and evaluation.  相似文献   

18.
Determination of volatile organic compounds (VOCs) formed one part of the EU-EXPOLIS project in which the exposure of European urban populations to particles and gaseous pollutants was studied. The EXPOLIS study concentrated on 30 target VOCs selected on the basis of environmental and health significance and usability of the compounds as markers of pollution sources. In the project, 201 subjects in Helsinki, 50 in Athens, 50 in Basel, 50 in Milan and, 50 in Oxford and 50 in Prague were selected for the final exposure sample. The microenvironmental and personal exposure concentrations of VOCs were the lowest in Helsinki and Basel, while the highest concentrations were measured in Athens and Milan; Oxford and Prague were in between. In all cities, home indoor air was the most significant exposure agent. Workplace indoor air concentrations measured in this study were generally lower than the home indoor concentrations and home outdoor air played a minor role as an exposure agent. When estimating the measured personal exposure concentrations using the measured concentrations and time fractions spent at home indoors, at home outdoors, and at the workplace, it could be concluded that these three microenvironments do not fully explain the personal exposure. Other important sources for personal exposure must be encountered, the most important being traffic/transportation and other indoor environments not measured in this study.  相似文献   

19.
20.
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号