首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.  相似文献   

2.
Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change.  相似文献   

3.
The effects of a coastal power plant on an outer estuarine bay ecosystem on the west coast of Florida were evaluated with measurements and an ecological model. Field measurements of community metabolism and biomass were taken from the thermally affected bay and from similar control bays. Model simulations were used to help understand these observations in terms of ecosystem structure and functioning.In the outer discharge bay the direct impact of the thermal plume was diluted and spread overlarge areas. The ecosystem developed structure and functions with lower biomass than in the control bays but with slightly faster rates of organic turnover. The productive turnover time of producer biomass during the summer was about 5 days in the discharge bay and about 6 days in the control bays. Power plant influence on total community metabolism was small with less than 10% difference in annual averages between the discharge and control bays (5.22 and 5.58 g O2/m2/day). The selection for faster metabolic turnover rates in the discharge by was evidenced by a dominance of plankton metabolism over benthic metabolism. The annual average gross planktonic production was around 3 g O2/m2/day in the discharge bay and around 2 g/m2/day in the control bays.In the model, temperature served as a stimulant to both productivity and respiration. When the isolated effects of increased temperature were simulated the model responded with lower producer biomass and faster rates of organic turnover, as was found in field measurements. These simulations also showed increased nutrient recycling and indicated patterns of temperature-induced migrations. Since power plant operation affected water exchange in the bays, several levels of total water exchange were simulated. These simulations indicated the importance of water exchange as a stabilizing factor, especially for sensitive compartments with rapid turnover rates (i.e. plankton and phosphorus stocks). Simulations of the effects of future power plant units on the bay ecosystem showed no large changes in total metabolism but indicated larger effects of plankton entrainment mortality and temperature-induced migrations of larger organisms.  相似文献   

4.
Potts DL  Scott RL  Cable JM  Huxman TE  Williams DG 《Ecology》2008,89(10):2900-2910
In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.  相似文献   

5.
The nekton of tidal creeks was studied at 17 sampling localities from September 1977 through August 1978, in the Cape Fear River estuary, North Carolina, USA. Prior to these dates, collections were made at 9 stations beginning in January 1977; these data were used to supplement conclusions drawn from the larger effort. Species recruited from the ocean utilized marsh habitats only temporarily and dominated the catches with over 70% of the total abundance. Their distribution was influenced by salinity gradients and to a lesser extent by substrate characteristics. In addition, temporal habitat partitioning with associated size differences of related species played an important role in structuring marsh nekton communities. A clearly defined ecotone was associated with the mesohaline-polyhaline transition zone, in slainities between 14 and 21 S. Numerous marine stenohaline forms were restricted to salinities above 16 S, thus increasing species richness in high salinity marshes. Despite differences in freshwater flows in 1977 and 1978, major features of the various marsh communities (species associations and relative abundances) exhibited little change throughout the Cape Fear estuary, indicating that these communities were relatively persistent in time. Standing crops for ocean-spawned species at the end of the growing season indicated that considerable annual export in the form of living biomass of fish and shellfish takes place from the marshes. Since most individuals of these species return to the ocean in the fall, an important energy link between the marshes and nearshore marine environment is demonstrated.  相似文献   

6.
A first-stage verified model of carbon/energy flux through the North Inlet (South Carolina) marsh—estuarine ecosystem is presented. The time series output for model compartments and overall septem carbon flow are compared with observed data collected over the past five to ten years. Results indicate that the model is stable and can broadly reproduce some of the major trends of a salt marsh—estuarine system. Further avenues of research are suggested.  相似文献   

7.
The salt marsh ecosystem at North Inlet, South Carolina, USA consistently exported dissolved inorganic nitrogen via tidal exchange with the coastal Atlantic Ocean. Concentrations centrations of NH 4 + and NO 3 - +NO 2 - displayed distinct tidal patterns with rising values during ebb flow. These patterns suggest the importance of biogeochemical processes in the flux of material from the salt marsh. NH 4 + export peaked during the summer (15 to 20 mg m-2 tide-1) during a net balance of tidal water exchange. Remineralization of NH 4 + within the salt marsh system appears to be contributing to the estimated annual net export of bout 4.7 g NH 4 + -N m-2 yr-1. NO 3 - +NO 2 - exports were higher in the fall and winter of 1979 (2 to 4 mg N m-2 tide-1). The winter export coincided with a considerable net export of water with no distinctive concentration patterns, suggesting a simple advective export. However, the fall peak of NO 3 - +NO 2 - export occurred during a period of net water balance in tidal exchange and an insignificant freshwater input from the western, forested boundary. During the summer and fall, tidal concentration patterns were particularly apparent, suggesting that nitrification within the salt marsh system was contributing to the estimated annual net export of ca 0.6 g NO 3 - +NO 2 - -N m-2 yr-1.Contribution No. 637 from the Belle W. Baruch Institute of Marine Biology and Coastal Research  相似文献   

8.
High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.  相似文献   

9.
R. A. Moll 《Marine Biology》1977,42(2):109-118
Phytoplankton production and associated variables were measured in Flax Pond, a 52 ha salt marsh on the north shore of Long Island, New York, from July 1972 to October 1973. Measurements made up to five times per day, once per week, yielded a mean annual net primary production, determined by the 14C technique, of 20.5 mg C/m3/h; daily means were as high as 60.0 mg C/m3/h. However, when productivity was calculated for the entire marsh ecosystem, the shallow water in the salt marsh produced only 11.7 g C/m2 of marsh/year. There was a net flux of phytoplankton from the coastal waters into the marsh; during the summer up to 0.2 g chlorophy 11/m2 of marsh was carried in with the tides daily and remained in the marsh. Analysis of the productivity data, as well as variables associated with productivity (pH, standing crop, nutrients, extinction coefficient), indicated that the aquatic portion of the marsh behaved more as a net consumer rather than a net producer of phytoplankton.Research carried out at Brookhaven National Laboratory, supported by the U.S. Atomic Energy Commission and the National Science Foundation under Grant No. AG-375.  相似文献   

10.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

11.
Pelagic primary production and benthic and pelagic aerobic metabolism were measured monthly at one site in the estuarine plume region of the nearshore continental shelf in the Georgia Bight. Benthic and water-column oxygen uptake were routinely measured and supplemented with seasonal measures of total carbon dioxide flux. Average respiratory quotients were 1.18:1 and 1.02:1 for the benthos and water column, respectively. Benthic oxygen uptake ranged from 1.23 to 3.41 g O2 m-2 d-1 and totalled 756 g O2 m-2 over an annual period. Water column respiration accounted for 60% of total system metabolism. Turnover rates of organic carbon in sediment and the water column were 0.09 to 0.18 yr-1 and 6.2 yr-1, respectively. Resuspension appeared to control the relative amounts of organic carbon, as well as the sites and rates of organic matter degradation in the benthos and water column. Most of the seasonal variation in benthic and pelagic respiration could be explained primarily by temperature and secondarily by primary productivity. On an annual basis, the shelf ecosystem appeared to be heterotrophic; primary production was 73% of community metabolism, which was 749 g C m-2 yr-1. The timing of heterotrophic periods through the year appeared to be closely related to both river discharge and the periodicity of growth and death of marsh macrophytes in the adjacent estuary. The results of this study support the estuarine outwelling hypothesis of Odum (1968).This is Contribution No. 530 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce  相似文献   

12.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

13.
The Delaware Bay ecosystem has been the focus of extensive habitat restoration efforts to offset finfish losses due to mortality associated with power plant water intake. As a result, a 45 km2 or a 3% increase in total marsh area was achieved by 1996-1997 through the restoration efforts of the Public Service Enterprise Group (PSEG). To quantify the impact of restoration efforts on system productivity, an Ecopath with Ecosim model was constructed that represented all major components of the ecosystem. The model consisted of 47 functional groups including: 27 fish species, 5 invertebrate groups, 4 multi-species benthic groups, 6 multi-species fish groups, 3 plankton groups, 1 shorebird group and 1 marine mammal group. Biomass, abundance, catch, and demographic data were obtained from the literature or from individual stock assessments conducted for principal ecosystem components. A base Ecosim model was fitted to time series of key species in the Bay representing the period 1966-2003. To access the gains from marsh restoration, model simulations reflecting no restoration were conducted to estimate the productivity that would have been lost if restoration efforts had not occurred. The results indicated that restoration increased total ecosystem biomass by 47.7 t km−2 year−1. Simulations indicated increased biomasses across a wide range of species including important forage and commercially important species. The marsh restoration also significantly impacted ecosystem structure increasing the ratio of production-to-respiration, increasing system path length and decreasing the ratio of production-to-biomass.  相似文献   

14.
水位是影响滨海湿地生态系统蓝碳功能的重要因素。气候变化引起的海平面上升以及极端气候事件的频发,可能加快水位的变化,从而改变生态系统碳交换的过程。然而,滨海湿地碳汇功能响应水位变化的机制尚不清楚。为了评估水位对滨海湿地净生态系统CO2交换(NEE)特征的影响,以及验证DNDC(denitrification-decomposition)模型对模拟预测滨海湿地生态系统碳交换的适用性,该研究设计了野外水位控制试验(自然水位,地下20 cm水位、地表10 cm水位),并利用DNDC模型模拟和预测水位变化对滨海湿地NEE的影响。结果表明:(1)不同水位处理之间NEE差异显著,地表10 cm水位处理促进CO2吸收,地下20 cm水位则抑制CO2吸收;(2)经过校准和验证的DNDC模型可以准确模拟水位变化对黄河三角洲湿地NEE的影响,NEE模拟值的日动态与田间观测结果显著相关(R2>0.6);(3)通过改变气候、土壤和田间管理等输入参数对DNDC模型进行灵敏度检验,生态系统碳交换过程对日均温、降雨和水位改变的响应最为显著,其中,水位对NEE的影响主要作用于土壤呼吸(Rs)。未来气候情境下,不同水位变化下的生态系统碳交换过程随年份增长呈现不同的规律,因此未来的模拟研究应关注DNDC中水文模块和植被演替过程的完善。该研究可为预测水文变化情境下滨海湿地碳汇功能的未来发展以及政策制定提供参考。  相似文献   

15.
Selective tidal-stream transport (STST) is used by many estuarine organisms. Spawning blue crabs use a form of STST, ebb-tide transport (ETT), to migrate to high-salinity areas of the lower estuary and coastal ocean for larval release. In tidal estuaries, ETT is driven by a circatidal rhythm in vertical swimming with episodic ascents into the water column during ebb tide. This study examined vertical swimming behavior of migrating female blue crabs tethered in habitats they could encounter during migration. A combined bio-physical field study in the summer of 2009 simultaneously measured physical parameters of the water column and vertical swimming behavior of tethered ovigerous crabs using pressure-recording dataloggers. Tethering sites were in the tidal Beaufort Inlet drainage and the non-tidal Albemarle-Pamlico Estuarine System, North Carolina, USA. Crabs tethered in tidal areas swam primarily during ebb tides, both day and night. Swimming frequency increased as embryonic development progressed and ebb-tide swimming continued after larval release. Swimming frequency varied among habitats with the highest swimming frequency in the known migratory corridor. Swimming did not occur in the non-tidal habitat. Differences in swimming frequency among sites are hypothesized to be responses to environmental cues, including flow regime. Some habitats serve as migratory corridors while others serve as foraging stopovers. These areas are likely defined by a combination of environmental cues including flow regime.  相似文献   

16.
随着对气候变化日趋关注,人们对生态系统气体交换及其主要影响因素进行了大量研究。短花针茅草原作为荒漠草原的典型代表,是亚洲特有的一种草原类型,是最干旱的草原类型,生态环境异常严酷,系统极度脆弱,稳定性差,在自然和人为干扰下极易退化。以短花针茅(Stipa breviflora)草原为研究对象,通过控制降雨量以及氮素添加对生态系统气体交换进行监测,研究气体交换对降雨量和氮素添加的响应过程,揭示降雨量和氮素添加对生态系统气体交换的影响作用。该文在2012年自然条件下,采用自动CO2通量系统(Li-6400, Li-COR, Lincoln, NE, USA)野外测定短花针茅(Stipa breviflora)草原生态系统气体交换数据,比较研究了增雨施肥(WN)、增雨不施肥(W)、减雨施肥(RN)、减雨不施肥(R)、单独施肥(N)、自然状况(CK)条件下2012年气体交换变化规律。结果表明:整个生长季生态系统净 CO2交换(NEE)、总的生态系统生产力(GEP)、生态系统呼吸值(ER)都呈先升高后降低的趋势,并在生长旺盛期(8月)达到最大值。NEE在N、W处理下有升高,其他处理都降低。ER在N、WN处理下都有升高,其他处理都降低。GEP在W、N、WN处理下都有升高,其他处理都降低。NEE、ER、GEP都是在N处理中达到最大值。  相似文献   

17.
Gap filling of flux data is necessary to assist with periodic interruptions in the measurement data stream. The gap-filling model (GFM), first described in Xing et al. [Xing, Z., Bourque, C.P.-A., Meng, F.-R., Zha, T.-S., Cox, R.M., Swift, E., 2007. A simple net ecosystem productivity model for gap filling of tower-based fluxes: an extension of Landsberg's equation with modifications to the light interception term. Ecol. Model. 206, 250–262], was modified to account for the day-to-day control of net ecosystem productivity (NEP) by incorporating air and soil temperature as new controlling variables in the calculation of NEP. To account for the multiple-phase influences of air and soil temperature on plant growth we model ecosystem respiration as a function of soil and canopy respiration. The paper presents model development in an incremental fashion in order to quantify the contribution of individual model enhancements to the prediction of NEP during periods when air and soil temperature variations are important.  相似文献   

18.
We present here a copper speciation model that accounts for the long-term (‘coastal-acidification’) and short-term (daily and seasonal variation) variability in water pH and water temperature. The developed model is applied to a sub-tropical estuary (Moreton Bay, Australia) at a one hundred year time scale so that outputs are consistent with climate change projections. The model predicts that the mean cupric ion concentration (Cu2+) in the estuary will increase by 115% over the next 100 years as a result of the projected decrease in pH and increase in water temperature. Through calibration, the estimated concentration of copper-complexing dissolved organic matter (DOM) in the estuary is found to be 22.5 nM. An increase in the concentration of Cu2+, which is the most toxic and bioavailable form of copper, has implications for ecosystem health and may have a negative effect on the detoxifying capacity of DOM. Models that provide a framework for coupling biological, chemical and physical processes are important for providing a holistic perspective of coastal systems, especially for better understanding a system within the context of climatic and non-climatic drivers.  相似文献   

19.
Construction and simulation of a model of Lake Conway, Florida, U.S.A., provided a framework for defining major characteristics of this ecosystem. The relationships that are formalized in this model comprise a set of hypotheses about the nature of a warm monomictic lake. The data that were used to parameterize the model came primarily from literature estimates, although approximations of biomass levels were available from associated research conducted on the lake.Submersed macrophytes are a major biomass component in Lake Conway; simulation suggested that their role in nutrient recycling overshadows their importance in the grazing food chain. Phytoplankton biomass and degree of fluctuation are considerably lower than are observed in most cool temperate lakes, although simulated respiration and herbivory rates are closer to temperate values than tropical values. Simulated epipelic algae biomass varies an order of magnitude during the year, and this group appears to be a significant part of the food chain. Simulated zooplankton consumption and turnover rates are very high, in part because of the relatively small biomass per individual. Simulation of the model suggests that slightly more carbon is processed through the grazing food chain in Lake Conway than through the detritus food chain.  相似文献   

20.
In a study that spanned from March 2007 through November 2009, we report high fungal biomass and over 90% of extracellular enzymatic activity occurring in the size classes dominated by fungi during periods of high autotrophic biomass in surface waters of the upwelling ecosystem off central-southern Chile (36°30.80′S–73°07.70′W). Fungal biomass in the water column was determined by the abundance of hyphae and was positively correlated with the concentration of the fungal biomarker 18:2ω6. High fungal biomass during active upwelling periods was comparable to that of prokaryotes (bacteria plus archaea) and was associated with an increase in phytoplankton biomass and in extracellular enzymatic hydrolysis in waters from the depth of maximum fluorescence. We show fungi as a new microbial component in the coastal upwelling ecosystem of the Humboldt Current System off central Chile. Our results suggest that the temporal pattern in fungal biomass in the water column during a year cycle is a reflection of their capacity to hydrolyze organic polymers and, in consequence, fungal biomass and activity respond to a seasonal cycle of upwelling in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号