首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops models of gallery construction, emergence and re-emergence for use in a general population dynamics model of the southern pine beetle, Dendroctonuc frontalis Zimmermann. Models of these processes were originally developed from laboratory data, and are extended here to account for fluctuating temperatures and variable attack densities under field conditions. The resulting models were tested using data from three natural populations (infestations) from east Texas. These tests reveal that the laboratory-derived models closely predict the timing and length of gallery, and the timing of emergence and re-emergence in the field.  相似文献   

2.
The link between individual habitat selection decisions (i.e., mechanism) and the resulting population distributions of dispersing organisms (i.e., outcome) has been little-studied in behavioural ecology. Here we consider density-dependent habitat (i.e., host) selection for an energy- and time-limited forager: the mountain pine beetle (Dendroctonus ponderosae Hopkins). We present a dynamic state variable model of individual beetle host selection behaviour, based on an individual’s energy state. Field data are incorporated into model parameterization which allows us to determine the effects of host availability (with respect to host size, quality, and vigour) on individuals’ decisions. Beetles choose larger trees with thicker phloem across a larger proportion of the state-space than smaller trees with thinner phloem, but accept lower quality trees more readily at low energy- and time-states. In addition, beetles make habitat selection decisions based on host availability, conspecific attack densities, and beetle distributions within a forest stand. This model provides a framework for the development of a spatial game model to examine the implications of these results for attack dynamics of beetle populations.  相似文献   

3.
Environmental conditions act above and below ground, and regulate carbon fluxes and evapotranspiration. The productivity of boreal forest ecosystems is strongly governed by low temperature and moisture conditions, but the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In order to quantify the seasonal responses of vegetation to environmental factors, the seasonality of carbon and heat fluxes and the corresponding responses for temperature and moisture in air and soil were simulated by merging a process-based model (CoupModel) with detailed measurements representing various components of a forest ecosystem in Hyytiälä, southern Finland. The uncertainties in parameters, model assumptions, and measurements were identified by generalized likelihood uncertainty estimation (GLUE). Seasonal and diurnal courses of sensible and latent heat fluxes and net ecosystem exchange (NEE) of CO2 were successfully simulated for two contrasting years. Moreover, systematic increases in efficiency of photosynthesis, water uptake, and decomposition occurred from spring to summer, demonstrating the strong coupling between processes. Evapotranspiration and NEE flux both showed a strong response to soil temperature conditions via different direct and indirect ecosystem mechanisms. The rate of photosynthesis was strongly correlated with the corresponding water uptake response and the light use efficiency. With the present data and model assumptions, it was not possible to precisely distinguish the various regulating ecosystem mechanisms. Our approach proved robust for modeling the seasonal course of carbon fluxes and evapotranspiration by combining different independent measurements. It will be highly interesting to continue using long-term series data and to make additional tests of optional stomatal conductance models in order to improve our understanding of the boreal forest ecosystem in response to climate variability and environmental conditions.  相似文献   

4.
Outbreaks of bark beetles in forests can result in substantial economic losses. Understanding the factors that influence the development and spread of bark beetle outbreaks is crucial for forest management and for predicting outbreak risks, especially with the expected global warming. Although much research has been done on the ecology and phenology of bark beetles, the complex interplay between beetles, host trees, beetle antagonists and forest management makes predicting beetle population development especially difficult. Using the recent infestations of the European Spruce Bark Beetle (Ips typographus L. Col. Scol.) in the Bavarian Forest National Park (Germany) as a case study, we developed a spatially explicit agent-based simulation model (SAMBIA) that takes into account individual trees and beetles. This model primarily provides a tool for analysing and understanding the spatial and temporal aspects of bark beetles outbreaks at the stand scale. Furthermore, the model should allow an estimation of the effectiveness of concurrent impacts of both antagonists and management to confine outbreak dynamics in practice. We also used the model to predict outbreak probabilities in various settings. The simulation results indicated a distinct threshold behaviour of the system in response to pressure by antagonists or management of the bark beetle population. Despite the different scenarios considered, we were able to extract from the simulations a simple rule of thumb for the successful control of an outbreak: if roughly 80% of individual beetles are killed by antagonists or foresters, outbreaks will rarely take place. Our model allows the core dynamics of this complex system to be reduced to this inherent common denominator.  相似文献   

5.
In order to simulate forest growth response to pre-commercial thinning (PCT), TRIPLEX1.0 - a process-based model designed to predict forest growth as well as carbon (C) and nitrogen (N) dynamics - was modified and improved to also simulate managed forest ecosystem thinning practices. A three-parameter Weibull distribution model was integrated to simulate thinning treatments within the newly developed TRIPLEX-Management model. The thinning intensity component within the model allows users to simulate thinning treatments by applying basal area, stand density and volume to quantify thinning intensity. Natural mortality decreased following thinning due to an increase in growing space for residual stems. Predicted litterfall pools also increased after thinning events took place. The TRIPLEX-Management model was tested against published observational data for Jack Pine (Pinus banksiana Lamb.) stands subjected to PCT in Northwestern Ontario, Canada. The coefficients of determination (R2) between the predicted and observed variables including stand density, mean DBH (diameter at breast height), the quadratic mean DBH, total volume and merchantable volume as well as belowground, aboveground, and total biomass ranged from 0.50 to 0.88 (n = 20, P < 0.001) with the exception of mean tree height (R2 = 0.25, n = 20, P < 0.05). Overall, the Willmott index of agreement between predicted and observed variables ranged from 0.97 to 1.00. Results show that the TRIPLEX-Management model is generally capable of simulating growth response to PCT for Jack Pine stands.  相似文献   

6.
Short-beaked common dolphins (Delphinus delphis) and Atlantic spotted dolphins (Stenella frontalis) are the two most abundant cetacean species in the oceanic waters of Madeira and the Azores. They are of similar size, occur in similar habitats and are regularly observed in mixed-species groups to forage together. Genetic analyses suggested that, within each species, dolphins ranging around both archipelagos belong to the same panmictic population. We tested the hypotheses that (1) within each species, individuals from the two archipelagos belong to a single ecological stock; (2) between species, common and spotted dolphins have distinct trophic niches; using fatty acid (FA) and stable isotope (SI) analyses. Fatty acids and stable isotopes were analysed from 86 blubber and 150 skin samples of free-ranging dolphins, respectively. Sex-related differences were not significant, except for common dolphin FA profiles. In S. frontalis, FA and SI differences between archipelagos suggested that individuals belonged to different ecological stocks, despite the existence of gene flow between the two archipelagos. In D. delphis, differences were more pronounced, but it was not possible to distinguish between stock structure and a seasonal effect, due to differential sampling periods in the Azores and Madeira. Inter-specific comparisons were restricted to the Azores where all samples were collected during summer. Differences in FA proportions, noticeably for FA of dietary origin, as well as in nitrogen SI profiles, confirmed that both species feed on distinct resources. This study emphasizes the need for an integrated approach including both genetic and biochemical analyses for stock assessment, especially in wide-ranging marine top predators.  相似文献   

7.
The gap model ZELIG was validated for red spruce–balsam fir–yellow birch and yellow birch–sugar maple–balsam fir forest types in southern Quebec, Canada. Long-term historical data originating from the Lake Edward Experimental Forest, La Mauricie National Park, were used. The effect of the variation in plot size, representing the space within which trees uptake site resources, was also examined. Several species were included in both forest types: red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), yellow birch (Betula alleghaniensis Britton), white birch (Betula papyrifera Marsh.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.) Carr.) and northern white cedar (Thuja occidentalis L.). The pattern of change in basal area growth varied among species, ranging from a steady increase to a more or less rapid decline. There was a good agreement between observations and predictions for yellow birch, red spruce, red maple, sugar maple, balsam fir and northern white cedar. Plot size had a significant impact on the dynamics of the different species. Depending on the species, the decline was accelerated, the amplitude of the fluctuations varied, or the maximum basal area reached changed. Predicted regeneration varied among species and the number of seedlings generally increased with increase in plot size. The pattern of development for most species was related to their life characteristics. The results highlighted the fact that there is a critical lack of knowledge and data on the dynamics of regeneration from the seedling to the sapling stages for the two forest types studied, which resulted in poor predictions for some species. As the life characteristics varied among species, the use of only one plot size for all species may not be realistic.  相似文献   

8.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

9.
A mathematical model of hydrogen fluoride (HF) deposition and accumulation of fluoride in a Eucalyptus rostrata forest has been developed. The model is based on tree physiology and meteorological principles. The data base for the model was derived from a literature survey of the physiological characteristics of E. rostrata and similar eucalyptus species and from current knowledge of meteorological processes in plant canopies.Comparison of the mathematical simulations with measurements in the vicinity of a source of HF (an aluminium reduction plant) shows that (1) the pattern of seasonal fluoride accumulation in leaves agrees with that seen in the field, and (2) the vertical pattern of accumulation inside tree leaves agrees with field observations. The simulations indicate that 50% of the released HF was deposited within 81 km of the source and that the concentration of HF in the air 81 km from the source was reduced to 2% of the concentration 1 km from the source. However, a very large forest area (20 600 km2) was required to achieve these reductions.  相似文献   

10.
《Ecological modelling》2006,190(1-2):147-158
Determinism in the evolution of a mound-building ant Formica lugubris (Hymenoptera:Formicidae) colony and the impact of environmental perturbations were analyzed using several methods. Variation in dome volume of ant-hills and their activity were followed in a larch forest of the southern French Alps for 8 consecutive years. The dynamic of domes was graphically visualized, and the deterministic component of variations was assessed using linear and nonlinear models (neural networks) in the context of auto-regressive and spatial multi-scale dependences hypothesis. An analysis of residuals was carried out (errors from the best global model) and nonpredictable data were located in perturbed areas (forest clearings and wind-throws).The dynamic of ant colony in the stand was simulated constructing a web of interacting neural net models. Evolution of virtual ant-hills was in accordance with real observed dynamic. The study revealed a very active dynamical system resulting from ants self-organizing in dome construction and confirmed that silvicultural practices can have a negative impact on ant colonies.  相似文献   

11.
Few researchers have developed large-scale habitat models for sympatric carnivore species. We created habitat models for red foxes (Vulpes vulpes), coyotes (Canis latrans) and bobcats (Lynx rufus) in southern Illinois, USA, using the Penrose distance statistic, remotely sensed landscape data, and sighting location data within a GIS. Our objectives were to quantify and spatially model potential habitat differences among species. Habitat variables were quantified for 1-km2 buffered areas around mesocarnivore sighting locations. Following variable reduction procedures, five habitat variables (percentage of grassland patches, interspersion–juxtaposition of forest patches, mean fractal dimension of wetland patches and the landscape, and road density) were used for analysis. Only one variable differed (P < 0.05) between red fox and coyote sighting areas (road density) and bobcat and coyote sighting areas (mean fractal dimension of the landscape). However, all five variables differed between red fox and bobcat sighting areas, indicating considerable differences in habitat affiliation between this pair-group. Compared to bobcats, red fox sightings were affiliated with more grassland cover and larger grassland patches, higher road densities, lower interspersion and juxtaposition of forest patches, and lower mean fractal dimension of wetland patches. These differences can be explained by different life history requirements relative to specific cover types. We then used the Penrose distance statistic to create habitat models for red foxes and bobcats, respectively, based on the five-variable dataset. An independent set of sighting locations were used to validate these models; model fit was good with 65% of mesocarnivore locations within the top 50% of Penrose distance values. In general, red foxes were affiliated with mixtures of agricultural and grassland cover, whereas bobcats were associated with a combination of grassland, wetland, and forest cover. The greatest habitat overlap between red foxes and bobcats was found at the interface between forested areas and more open cover types. Our study provides insight into habitat overlap among sympatric mesocarnivores, and the distance-based modelling approach we used has numerous applications for modelling wildlife–habitat relationships over large scales.  相似文献   

12.
Only recently, studies of forest succession have started to include the effects of browsing by wild or domestic ungulates. We aim to contribute to this topic by analysing the influence of goat grazing on the long-term coexistence of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) in the low-elevation forests of an inner-Alpine dry valley. The forest gap model ForClim was first adapted to these site conditions by examining the site-dependent sensitivity of the model with regard to the species-specific parameterisation of the drought tolerance as well as the light demand of establishing and adult trees. In a second step, the behaviour of the model was investigated with respect to different grazing intensities and species-specific browsing susceptibilities. The last step was the application of a grazing scenario based on forest history, with 150 years of heavy browsing (by goats) at the beginning of the simulated forest succession, followed by less intensive grazing pressure.  相似文献   

13.
14.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

15.
Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by >3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends.  相似文献   

16.
Grazing sea urchins can reduce kelp abundance and therefore strongly affect kelp forest community structure. Despite the ecological importance of sea urchins, direct field studies on the role that urchin predators play in shaping urchin populations are rare for southern California. We conducted surveys and manipulative experiments within kelp forests near San Diego, CA, (32–51′28″N, 117–16′00″W) from 2006 to 2009 to determine whether predators such as sheephead (Semicossyphus pulcher) and spiny lobsters (Panulirus interruptus) may be linked to purple urchin (Strongylocentrotus purpuratus) and red urchin (Strongylocentrotus franciscanus) distribution and habitat use, as well as purple urchin density-dependent mortality. Purple urchins were less dense and more cryptic inside a local marine protected area (MPA) that contained high predator abundance than in nearby heavily fished areas, whereas red urchins rarely were found outside the MPA. Urchin proportional mortality was inversely density dependent during the day when sheephead were active, despite fish aggregations in plots of high urchin density, but was density independent during the night when lobsters were active. Urchin mortality was reduced under understory algal cover during the day, but not during the night. Examining whether urchin mortality from predation is density dependent and how habitat complexity influences this relationship is imperative because behavioral changes and increases in urchin populations can have vast ecological and economic consequences in kelp forest communities.  相似文献   

17.
《Ecological modelling》2005,187(1):40-59
The topic of this paper is a simplified model for simulating the hydrological properties of forest stands based on a robust computation of the temporal LAI (leaf area index) dynamics. The approach allows the simulation of all hydrologically relevant processes. It includes interception of precipitation and transpiration of forest stands with and without groundwater in the rooting zone. The model also considers phenology, mortality and simple management practice. It was implemented as a module in the eco-hydrological model SWIM (Soil and Water Integrated Model). The approach was tested on Scots pine (Pinus sylvestris) and common oak (Quercus robur and Q. petraea).The results demonstrate a good simulation of annual biomass increase and LAI and satisfactory simulation of litter production (annual mean value). A comparison of the date of May sprout for Scots pine and leaf unfolding for Oak (1980–1990) with observed data of the DWD (German Weather Service) shows a good reproduction of the temporal dynamic. The daily simulation of transpiration shows an excellent correlation of r = 0.81 for the year 1998 but only r = 0.65 for 1999. The interception losses were also simulated and compared with weekly observed data showing satisfactory results in the vegetation periods and annual sums, but worse agreement in autumn and spring time. A regional assessment study was done in the federal state of Brandenburg (Germany) to test the applicability and multi-criteria evaluation capabilities of the approach on the landscape and catchments scale using forest data, daily river discharge and regional water balance.  相似文献   

18.
In their recent study, Hilbeck et al. (2012) report that Cry1Ab causes lethal effects on larvae of the ladybird beetle Adalia bipunctata when fed directly to the predator. Such toxic effects were not previously observed in a direct feeding study conducted by us (álvarez-Alfageme et al. 2011). Because Hilbeck et al. (2012) claim that our study design did not allow us to detect any adverse effects we provide arguments for the value and relevance of our study in this commentary. Furthermore we discuss two additional published studies that have not revealed any direct effects of Cry1Ab on larvae of A. bipunctata and are not mentioned by Hilbeck et al. (2012). One of the studies was conducted in our laboratory under more realistic exposure conditions (álvarez-Alfageme et al. 2011). Feeding A. bipunctata larvae with spider mites reared on Bt maize did not reveal any adverse effects on lethal and sublethal parameters of the predator. This was despite the fact that the larvae had ingested high amounts of biologically-active Cry1Ab protein. Thus, we do not see verified evidence that A. bipunctata larvae are sensitive to Cry1Ab at realistic worst-case exposure concentrations. This, together with the fact that A. bipunctata will be little exposed to Cry1Ab under field conditions, allows us to conclude that the risk of Bt maize to this predator is negligible. Support for this comes from the results of many Bt maize field studies that have not revealed evidence for direct Cry1Ab-effects on non-Lepidoptera species.  相似文献   

19.
Piper regnellii (Piperaceae) contains high levels neolignans with diverse biological activities, including insecticidal. Despite the insecticidal activity of these neolignans, Naupactus bipes (Coleoptera: Curculionidae) larvae and adults were found feeding on the leaves (adults) and roots (larvae) of P. regnellii. The present study investigated the metabolic pathway of neolignans from P. regnellii leaves in the beetle N. bipes, focusing on possible biotransformation or sequestration of these compounds by the beetle. Two of the four plant neolignans could be recovered in the feces of adults feeding on P. regnellii leaves. In addition, four degradation products were detected, including the neolignan 3-[(2R,3R)-2,3-dihydro-3-(methyl)-2-(4-hydroxyphenyl)-5-benzofuranyl]-(2E)-propenal (7), an oxidation product of conocarpan, the major plant neolignan. The adult beetle sequesters the neolignan conocarpan selectively from leaves as well as accumulates neolignan 7. Neolignan 7 was also detected in the larvae of lab-reared beetles.  相似文献   

20.
Populations near the geographic distribution limits of the species are considered to live under suboptimal conditions, and hence, slight environmental changes can be critical for their survival. The potential sensitivity to disturbances of the long-living macroalga Ascophyllum nodosum was analyzed by the determination of growth, recruitment, mortality, and production of biomass of a population near its southern distribution limit. Recruitment, survival and growth rates of <2 years old individuals were determined in a new population growing in experimentally denudated squares. Demographic data for >2 years old individuals were obtained from individuals in the original population after estimating their age from the number of gas bladders in the thallus. Growth and survival were described as continuous nonlinear functions of age applied to the population and were further used to make demography-based production estimates. Recruitment of A. nodosum in denudated substrates seemed to require a previous cover of other macroalgae (as Fucus vesiculosus) as the only cohort detected during the 26-month period of the study was observed after F. vesiculosus individuals started to increase. The low production estimates (2,033 g m?2 for a 10 year period) and poor recruitment may indicate a slow recuperation of this population to denudation. However, the large variability observed in the estimated growth curves of different populations along this southern distribution area suggests a large influence of local conditions that may help to overcome environmental changes at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号