首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green turtle (Chelonia mydas) nesting population at Tortuguero, Costa Rica, is the largest nesting aggregation in the Atlantic, by at least an order of magnitude. Previous mitochondrial DNA (mtDNA) surveys based on limited sampling (n = 41) indicated low genetic diversity and low gene flow with other Caribbean nesting colonies. Furthermore, a survey of nuclear DNA diversity invoked the possibility of substructure within the Tortuguero rookery. To evaluate these characteristics, mtDNA control region sequences were determined for green turtles nesting at Tortuguero in 2001 (n = 157) and 2002 (n = 235). The increased sample revealed three additional haplotypes; five haplotypes are now known for Tortuguero female green turtles. Analyses of molecular variance indicated that there was no significant spatial population structure along the 30-km nesting beach. In addition, no temporal population structure was detected either between the two nesting seasons or within the nesting season. As a result of the larger sample size and additional haplotypes, estimates of genetic separation among Caribbean nesting colonies have changed and the concordance of phylogenetic and phylogeographic patterns reported in the past for green turtles in the Greater Caribbean has weakened. The five haplotypes from Tortuguero represent 36% of the haplotypes identified in green turtle nesting aggregations in the Greater Caribbean and 17% of the haplotypes known to occur in nesting or foraging aggregations in the Greater Caribbean. Haplotype diversity (0.16) and nucleotide diversity (0.0034) for the Tortuguero population are substantially lower than those for the combined rookeries in the Greater Caribbean (0.44 and 0.0078, respectively). Although comprehensive evaluation of regional genetic diversity requires nuclear DNA data, our study indicates that conserving genetic diversity in Caribbean green turtles will require careful management of the smaller rookeries in addition to the Tortuguero rookery.  相似文献   

2.
Although green turtles (Chelonia mydas Linnaeus) do not nest in Barbados, the easternmost island in the Caribbean archipelago, juveniles are regularly seen foraging in nearshore waters. To examine the stock composition of this foraging population, mitochondrial (mt) DNA control region sequences were analysed from 60 juvenile (31–70 cm curved carapace length) green turtles and compared with data published for key nesting populations in the Atlantic, as well as other feeding grounds (FGs) in the Caribbean. Eight distinct haplotypes were recognised among the 60 individual green turtles sampled around Barbados. Three of the haplotypes found have only previously been reported from western Caribbean nesting beaches, and two only from South Atlantic beaches. The nesting beach origin of one of the Barbados FG haplotypes is as yet unidentified. Stock mixture analysis based on Bayesian methods showed that the Barbados FG population is a genetically mixed stock consisting of approximately equal contributions from nesting beaches in Ascension Island (25.0%), Aves Island/Surinam (23.0%), Costa Rica (19.0%), and Florida (18.5%), with a lesser but significant contribution from Mexico (10.3%). Linear regression analysis indicated no significant effects of rookery population size or distance of the rookery from the FG on estimated contributions from the source rookeries to the Barbados FG. Our data suggest that the similar-sized green turtles sampled on the Barbados FG are a mixed stock of more diverse origins than any previously sampled feeding aggregations in the Caribbean region. The relatively large contribution from the Ascension Island rookery to the Barbados FG indicates that hatchlings from distant rookeries outside the Caribbean basin enter the North Atlantic gyre and become a significant part of the pool from which eastern Caribbean foraging populations are derived. These data support a life cycle model that incorporates a tendency of immatures to migrate from their initial foraging grounds at settlement towards suitable foraging grounds closer to their natal rookeries as they mature.Communicated by P.W. Sammarco, Chauvin  相似文献   

3.
This study is the first report of post-nesting migrations of loggerhead sea turtles (Caretta caretta) nesting in Sarasota County (Florida, USA), their most important rookery in the Gulf of Mexico (GOM). In total, 28 females (curved carapace length CCL between 82.2 and 112.0 cm) were satellite-tracked between May 2005 and December 2007. Post-nesting migrations were completed in 3–68 days (mean ± SD = 23 ± 16 days). Five different migration patterns were observed: six turtles remained in the vicinity of their nesting site while the other individuals moved either to the south-western part of the Florida Shelf (n = 9 turtles), the Northeast GOM (n = 2 turtles), the South GOM (Yucatán Shelf and Campeche Bay, Mexico, and Cuba; n = 5 turtles) or the Bahamas (n = 6 turtles). In average, turtles moved along rather straight routes over the continental shelf but showed more indirect paths in oceanic waters. Path analyses coupled with remote sensing oceanographic data suggest that most of long-distance migrants reached their intended foraging destinations but did not compensate for the deflecting action of ocean currents. While six out of seven small individuals (CCL < 90 cm) remained on the Florida Shelf, larger individuals showed various migration strategies, staying on the Florida Shelf or moving to long-distance foraging grounds. This study highlights the primary importance the Western Florida Shelf in the management of the Florida Nesting Subpopulation, as well as the need of multi-national effort to promote the conservation of the loggerhead turtle in the Western Atlantic. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Low level aerial observations were used to obtain synoptic records of the distribution of sea turtle nesting activity along both coasts of Costa Rica. Pertinent environmental information was simultaneously recorded including beach characteristics, river effluents, and evidence of coastal currents. Other correlative information was obtained from detailed maps, current charts, and climatological data. On the Caribbean coast, as expected, green turtle (Chelonia mydas) nesting was concentrated on the beaches between the Tortuguero and Parismina Rivers. On the Pacific coast, two major nesting beaches for the Pacific ridley Lepidochelys olivacea were found, each having over 100 thousand turtles aggregated offshore during the peak period between September and November. Aggregations were present at least from July through December. Massed nesting occurs each year on these same beaches and the event is known as the salida de flota by the natives of Guanacaste Province. Numerous less important nesting beaches were also found. Nesting density did not correlate well with beach quality but, instead, appeared to be related to the proximity of the beach to offshore currents. Oceanic current systems apparently facilitate the transport of sea turtles to the general vicinity of the important nesting beaches on both coasts of Coata Rica.Contribution No. 1557 from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA.  相似文献   

5.
We analyzed a large dataset to quantify adult annual survival probability and remigration intervals for the Tortuguero, Costa Rica green turtle population. Annual survival probability was estimated at 0.85 (95% CI 0.75–0.92) using a recovery model and at 0.85 (95% CI 0.83–0.87) using an open robust design model. The two most common modes of remigration are 2 and 3 years. Annual survival probability is lower and remigration intervals are shorter than for other green turtle populations. Explanations for short remigration intervals include reproductive compensation due to historic population declines, availability of better quality food items, favorable environmental conditions, and short distance to the main foraging grounds. Variation in survival and remigration intervals have profound consequences for management and life history evolution. The short remigration intervals of Tortuguero green turtles partly offset mortality caused by turtle fishing in Nicaragua and mean that low juvenile survival represents a more urgent threat to the population than low adult survival. Low adult survival probability could result in selective pressure for earlier age at maturity.  相似文献   

6.
Loggerhead turtles (Caretta caretta) are known to migrate towards fixed, individually-specific residential feeding grounds. To study their spatial behaviour and their navigational ability, five loggerheads nesting in South Africa were captured when about to start their postnesting migration and tracked by satellite after having been displaced from their usual migratory route. The first turtle, released south of Madagascar about 1,148 km from the capture site, moved west up to mainland Africa and then reached her feeding grounds by following the coast. A second turtle, released farther away (2,140 km) close to La Réunion Island, stopped for some time on the Madagascar east coast, then turned southwards to round the island and regain the African mainland in the northwest, without however allowing us to establish the location of her residential grounds. Three other turtles were released off the Tanzanian coast, 2,193 km north of their nesting area, at the northern edge of the distribution of the feeding grounds along the African coast. All of them headed north, and one turtle found her residential grounds located north of the release site. The other two females started long-distance oceanic wanderings in which they crossed nearly the entire Indian Ocean, apparently being transported by the sea currents of the region. We conclude that adult loggerhead turtles are apparently unable to compensate for the displacement and can return to a pelagic life style characteristic of juvenile turtles. These findings suggest that South African loggerheads rely on simple orientation mechanisms, such as the use of the coastline, as a guide, and compass orientation, possibly integrated by spatiotemporal programmes and/or acquired maps of familiar sites.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

7.
A female of Chelonia mydas was tracked by satellite in the South China Sea in 1993 from the nesting beach to the resident foraging grounds more than 600 km away. The final leg of the journey, 475 km long, directly pinpointed the goal, with the turtle maintaining a constant speed and direction both night and day. This provides clues about the navigational mechanism used.  相似文献   

8.
The green turtle ( Chelonia mydas ) population that nests at Tortuguero, Costa Rica, is the largest in the Atlantic by at least an order of magnitude. Surveys to monitor the nesting activity on the northern 18 km of the 36-km beach were initiated in 1971 and extended to the entire beach in 1986. From the survey data, we estimated the total number of nesting emergences on the northern 18 km for each year from 1971 through 1996. Evaluation of the trend in nesting emergences indicated a relatively consistent increase from 1971 to the mid-1980s, constant or perhaps decreasing nesting during the late 1980s, and then resumption of an upward trend in the 1990s. Evaluation of trends in sea turtle nesting populations requires many years of data because of the large degree of annual variation in nesting numbers. The trends reported in this study must be evaluated with caution for several reasons. First, if the mean number of nests deposited by each female each year (clutch frequency) varies significantly among years, changes in the number of nesting emergences among years could reflect changes in the number of nesting females, clutch frequency, or both. Second, we only assessed the trend in one segment of the population (mature females), which may or may not represent the trend of the entire green turtle population and which, because of late maturity, may not reflect changes in juvenile mortality for many years. Third, survey frequency, and thus confidence in annual estimates, varied among years. The upward population trend must be assessed from the perspective of the catastrophic decline that the Caribbean green turtle populations have experienced since the arrival of Europeans. If careful management is continued in Costa Rica and adopted throughout the region, the collapse of the Caribbean green turtle populations—which seemed imminent in the 1950s—can be avoided.  相似文献   

9.
Satellite transmitters were deployed on ten green turtles (Chelonia mydas) nesting in Rekawa Sanctuary (RS-80.851°E 6.045°N), Sri Lanka, during 2006 and 2007 to determine inter-nesting and migratory behaviours and foraging habitats. Nine turtles subsequently nested at RS and demonstrated two inter-nesting strategies linked to the location of their residence sites. Three turtles used local shallow coastal sites within 60 km of RS during some or all of their inter-nesting periods and then returned to and settled at these sites on completion of their breeding seasons. In contrast, five individuals spent inter-nesting periods proximate to RS and then migrated to and settled at distant (>350 km) shallow coastal residence sites. Another turtle also spent inter-nesting periods proximate to RS and then migrated to a distant oceanic atoll and made forays into oceanic waters for 42 days before transmissions ceased. This behavioural plasticity informs conservation management beyond protection at the nesting beach.  相似文献   

10.
I.-J. Cheng 《Marine Biology》2000,137(4):747-754
 During the summers of 1994 to 1997, eight green turtles (Chelonia mydas) nesting at Wan-An Island, PengHu Archipelago, Taiwan, were equipped with satellite-telemetry transmitters. Using the Argos-linked satellite system, the turtles' migration routes were tracked until the transmissions stopped. The turtles migrated widely on the continental shelf to the east of Mainland China. The migration distances ranged from 193 to 1909 km, and the migration speeds from 1.2 to 2.8 km h−1. The turtles apparently utilize several coastal areas as temporal residential foraging sites, and their migrations consist of both trans-oceanic and coastal legs. The wide distribution of the foraging sites of the turtles comprising this rookery reflects the extent to which the green turtle migrates in northeast Asia; regional and international cooperation will therefore be needed to conserve this declining population. Received: 14 December 1998 / Accepted: 8 May 2000  相似文献   

11.
Four loggerhead females (Caretta caretta) were caught when emerging at their nesting beach on the Natal coast, prevented from egg laying and displaced along the coast 38 to 70 km from the capture site. They were then released either on the shore or 37 km offshore. The successful journeys back to the capture area and the successive migrations were tracked by satellite. In compensating for the displacement, loggerheads showed a capability of true navigation. The 545 to 1000 km long migratory journeys of three turtles were followed along the Mozambique coast up to the feeding grounds. Migratory speed was similar at night and during the day. During the trip, submergences were shorter and more frequent than during the stay at the feeding grounds. Received: 17 March 1997 / Accepted: 21 April 1997  相似文献   

12.
Nest site selection of the green turtles on Wan-An Island in the summer of 1996 was determined. Turtles (Chelonia mydas) laid on average one clutch for every three emergences. Even though the total track length was 115 m on average, individual lengths varied considerably depending on the nesting beach where the turtles emerged. Limited accessibility, i.e. adequate distance from the nearest village and a well-protected environment, make beaches A and D suitable nesting beaches for green turtles on Wan-An Island. Both total track and nesting track apexes were found clustered in the interface zone, and turtles preferred to reach the vegetation zone once they emerged from the sea. It is suggested that the turtles on Wan-An Island exhibit nest site selection behavior. Based on these results and the high nest site fidelity to their first nesting beach, conservation recommendations are proposed to the county and central governments for the preservation of nesting beaches in their natural state, by prohibiting illegal sand mining and properly controlling turtle watch groups on Wan-An Island. Received: 21 November 1997 / Accepted: 24 December 1998  相似文献   

13.
Marine coast modification and human pressure affects many species, including sea turtles. In order to study nine anthropogenic impacts that might affect nesting selection of females, incubation and hatching survival of loggerhead (Caretta caretta) and green turtle (Chelonia mydas), building structures were identified along a 5.2 km beach in Kanzul (Mexico). A high number of hotels and houses (88; 818 rooms), with an average density of 16.6 buildings per kilometer were found. These buildings form a barrier which prevents reaching the beach from inland, resulting in habitat fragmentation. Main pressures were detected during nesting selection (14.19% of turtle nesting attempts interrupted), and low impact were found during incubation (0.77%) and hatching (4.7%). There were three impacts defined as high: beach furniture that blocks out the movement of hatchlings or females, direct pressure by tourists, and artificial beachfront lighting that can potentially mislead hatchlings or females. High impacted areas showed lowest values in nesting selection and hatching success. Based on our results, we suggest management strategies to need to be implemented to reduce human pressure and to avoid nesting habitat loss of loggerhead and green turtle in Kanzul, Mexico.  相似文献   

14.
Hannan LB  Roth JD  Ehrhart LM  Weishampel JF 《Ecology》2007,88(4):1053-1058
Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.  相似文献   

15.
Young green turtles (Chelonia mydas) spend their early lives as oceanic omnivores with a prevalence of animal prey. Once they settle into neritic habitats (recruitment), they are thought to shift rapidly to an herbivorous diet, as revealed by studies in the Greater Caribbean. However, the precise timing of the ontogenic dietary shift and the actual relevance of animal prey in the diet of neritic green turtles are poorly known elsewhere. Stable isotopes of carbon, sulfur and nitrogen in the carapace scutes of 19 green turtles from Mauritania (NW Africa), ranging from 26 to 102 cm in curved carapace length (CCLmin), were analyzed to test the hypothesis of a rapid dietary shift after recruitment. Although the length of residence time in neritic habitats increased with turtle length, as revealed by a significant correlation between turtle length and the δ13C and the δ34S of the scutes, comparison of the δ15N of the innermost and outermost layers of carapace scutes demonstrated that consumption of macrophytes did not always start immediately after recruitment, and turtles often resumed an animal-based diet after starting to graze on seagrasses. As a consequence, seagrass consumption did not increase gradually with turtle size and animal prey largely contributed to the diet of turtles within the range 29–59 cm CCLmin (76–99% of assimilated nutrients). Seagrass consumption by turtles larger than 59 cm CCLmin was higher, but they still relied largely on animal prey (53–76% of assimilated nutrients). Thus, throughout most of their neritic juvenile life, green turtles from NW Africa would be better classified as omnivores rather than herbivores. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km2) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species’ use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long‐distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA. Uso de los Patrones de Migración a Larga Distancia de una Especie en Peligro de Extinción para Informar a la Planeación de la Conservación del Área Marina Protegida más Grande  相似文献   

17.
Despite the vast amount of research on threatened and endangered green turtle populations, some uncertainty regarding stage durations, growth rates, and age at maturation remains. We used skeletochronology to address this gap in knowledge for green turtle populations in the North Atlantic Ocean that use coastal waters along the southeastern U.S. as developmental habitat. Oceanic stage duration was estimated at 1–7 years ( [`(\textX)] \overline{\text{X}}  = 3 years). Several growth models, including von Bertalanffy, logistic, Gompertz, and power functions were evaluated for describing sex-specific length-at-age data. Ages at maturation estimated using mean size at nesting for females from each genetic sub-population contributing juveniles to this neritic foraging area were 44 years (Florida), 42.5 years (Costa Rica), and 42 years (Mexico), which were higher than previously reported ages. This implies that nesting populations comprising primarily individuals utilizing foraging grounds in the southeastern U.S. may take longer to recover than previously estimated.  相似文献   

18.
The somatic growth dynamics of green turtles (Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the south-eastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg (~6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length (cm SCL year–1) and, for two of the populations, also as change in body mass (kg year–1). Expected growth rates varied from ca. 0–2.5 cm SCL year–1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is 80 cm SCL. The expected size-specific growth rate functions for four populations sampled in the south-eastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50–53 cm SCL (~18–23 kg) or ca. 13–19 years of age. The growth spurt for the Midway atoll population in the north-western archipelago occurs at a much larger size (ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35–40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be >50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10–20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
Migratory marine turtles are extremely difficult to track between their feeding and nesting areas, and the link between juvenile and adult habitats is generally unknown. To assess the composition of a feeding ground (FG) population of juvenile green turtles (Cheloniamydas Linnaeus), mitochondrial DNA control region sequences were examined in 80 post-pelagic individuals (straight carapace length = 31 to 67 cm) sampled in September 1992 from Great Inagua, Bahamas, and compared to those of 194 individuals from nine Atlantic and Mediterranean nesting colonies. Evidence from genetic markers, haplotype frequencies, and maximum likelihood (ML) analyses are concordant in indicating that multiple colonies contribute to the Bahamian FG population. ML analyses suggested that most Bahamian FG juveniles originated in the western (79.5%) and eastern (12.9%) Caribbean regions, and these proportions are roughly comparable to the size of candidate rookeries. These data support a life-cycle model in which individuals become pooled in post-hatchling (pelagic) and juvenile (benthic) habitats as a consequence of ocean currents and movement among FGs. A substantial harvest of immature turtles on their feeding pastures will influence the reproductive success of contributing nesting populations over a wide geographic scale. Received: 1 April 1997 / Accepted: 14 October 1997  相似文献   

20.
Hawksbill sea turtles (Eretmochelys imbricata) nesting in Barbados (Needham’s Point, 13° 04′ 41.33′′ N, 59° 36′ 32.69′′W) were outfitted with GPS dataloggers over three breeding seasons (2008–2010) to track movement during inter-nesting intervals. Most females established spatially restricted resident areas up current and within 7 km of the nesting beach where they spent the majority of the inter-nesting interval. Females nesting earlier in the season settled on shallower sites. Only experienced remigrant turtles occupied the most distant resident areas. Females tracked for multiple inter-nesting intervals exhibited site fidelity, but the area contracted and the activity of females decreased with each successive interval. Hawksbills may trade off site characteristics with distance from the nesting beach and reduce activity over the course of the breeding season to optimise energy reserves during inter-nesting intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号