首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model of the feeder-seeder mechanism of orographic rain (Carruthers and Choularton, 1983) is used to describe the development of acid rain due to collection by initially ‘clean’ raindrops, falling from mid-level clouds, of cloud drops formed in low-level polluted air. The process is most efficient over hills where considerable low-level enhancement by the feeder-seeder mechanism occurs. We describe the distribution of this enhancement over hills of various sizes, the associated acidity and the deposition rate of H+ ions. The largest acid deposition rates may be very localized and more than an order of magnitude greater than other modes of deposition such as the turbulent diffusion of cloud droplets to ground.  相似文献   

2.
Environmental Science and Pollution Research - Organophosphate esters (OPEs) are substances globally used as flame retardants and plasticizers that have been detected in all environmental...  相似文献   

3.
Acid rain and acidification in China: the importance of base cation deposition   总被引:42,自引:0,他引:42  
Acid deposition has been recognized as a serious environmental problem in China. Most acid deposition studies have focused on sulfur deposition and the pH of precipitation. However, as high concentration of alkaline dust is an important feature of the atmosphere in large parts of China, base cation deposition must be taken into account when discussing possible effects on soils and vegetation from acid deposition. We estimate the deposition of sulfur as well as calcium, i.e. the dominating anion and cation, on a regional scale in China using data both from measurements and modeling. The ratio of sulfur/calcium in deposition is then used as an indicator for identifying areas where deposition acidity exceeds alkalinity, and where soils may be at risk to acidification. The dynamic soil acidification model MAGIC is applied with data from two sites receiving high deposition loads in southwest China. The model predictions indicate that considerable soil acidification has been going on for the last decades due to acid deposition inputs. Effects on the spatial distribution of acidic deposition in China, using different future deposition scenarios, are illustrated. As the size of the anthropogenic fraction of the base cation deposition is unknown, different possible future trends in calcium deposition were used. Soil response, according to the model, using different combinations of sulfur and calcium deposition scenarios is shown. Applying the most strict measures to reduce sulfur emission will almost eliminate the acid deposition problem; however, such a scenario is not economically feasible in the short term. A strict, but possibly realistic, future scenario for sulfur may be enough to keep the situation at the present level, assuming only moderate reductions in calcium deposition. With large decreases in base cation deposition, increased soil acidification can be expected even with considerable sulfur emission reductions.  相似文献   

4.
Matson P  Lohse KA  Hall SJ 《Ambio》2002,31(2):113-119
The sources and distribution of anthropogenic nitrogen (N), including N fertilization and N fixed during fossil-fuel combustion, are rapidly becoming globally distributed. Responses of terrestrial ecosystems to anthropogenic N inputs are likely to vary geographically. In the temperate zone, long-term N inputs can lead to increases in plant growth and also can result in over-enrichment with N, eventually leading to increased losses of N via solution leaching and trace-gas emissions, and in some cases, to changes in species composition and to ecosystem decline. However, not all ecosystems respond to N deposition similarly; their response depends on factors such as successional state, ecosystem type, N demand or retention capacity, land-use history, soils, topography, climate, and the rate, timing, and type of N deposition. We point to some of the conditions under which anthropogenic impacts can be significant, some of the factors that control variations in response, and some areas where uncertainty is large due to limited information.  相似文献   

5.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

6.
This review describes the more important features of the emission, chemistry, transport and deposition of pollutants involved in acid deposition. Global emissions, both natural and man-made, of sulphur and nitrogen oxides are discussed and examples of spatial distributions and trends over the last century presented. The more significant chemical and physical processes involved in the transformation of the primary emissions into their acidic end products are described, including a summary of the approximate timescales of the processes involved. Measurements and modelled calculations of spatial and temporal patterns in the deposition of acidic pollutants by both wet and dry pathways are presented.  相似文献   

7.
For conifer stands in NW-Germany with high DIN load (23-35 kg N ha−1 a−1) and a long history of nitrogen export the risk of N mobilization were investigated. Ammonium is the most mobilized N species, pointing towards either conditions not favoring nitrification or, more likely - under the dominant aerobic conditions - a very high amount of ammonium in the forest floor. Independence of net nitrification and net ammonification from each other indicates the existence of two separate systems. The nitrifying system depends very much on biotic conditions - as a function of energy and moisture - and seems not to be directly related to N deposition. In contrast, for the ammonification system (Oe horizon) a correlation with the sum of ammonium deposition three months prior to sampling was found. However, the role of disturbance, i.e. nitrogen export, during the last centuries and the role of recovery of the N balance during the last 150 years is still not clear.  相似文献   

8.
The properties of an acid rain episode that could influence the germination of pollen in corn, Zea mays L., were evaluated by treating silks with a simulated acid rain and measuring the subsequent germination of pollen on the silks. The data indicated that acid rain creates an inhospitable environment for pollen germination on the silk surface. Reduced germination appeared directly related to the acidity of the rain, but not the sulphate concentration. Rinsing silks with a pH 5.6 rain after treatment with a pH 2.6 rain did not increase pollen germination above that on silks treated only with a pH 2.6 rain, suggesting the reduced germination was due to physical and/or chemical modifications of the silk surface and not to residual acid on the tissue. Pollen germination on silks was inhibited even when silk tissue was exposed to a simulated rain of pH 2.6 for <1.5min.  相似文献   

9.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

10.
The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.  相似文献   

11.
Water soluble organic nitrogen (WSON) compounds are ubiquitous in precipitation and in the planetary boundary layer, and therefore are a potential source of bioavailable reactive nitrogen. This paper examines weekly rain data over a period of 22 months from June 2005 to March 2007 collected in 2 types of rain collector (bulk deposition and “dry + wet” deposition) located in a semi-rural area 15 km southwest of Edinburgh, UK (N55°51′44″, W3°12′19″). Bulk deposition collectors are denoted in this paper as “standard rain gauges”, and they are the design used in the UK national network for monitoring precipitation composition. “Dry + wet” deposition collectors are flushing rain gauges and they are equipped with a rain detector (conductivity array), a spray nozzle, a 2-way valve and two independent bottles to collect funnel washings (dry deposition) and true wet deposition. On average, for the 27 weekly samples with 3 valid replicates for the 2 types of collectors, dissolved organic nitrogen (DON) represented 23% of the total dissolved nitrogen (TDN) in bulk deposition. Dry deposition of particles and gas on the funnel surface, rather than rain, contributed over half of all N-containing species (inorganic and organic). Some discrepancies were found between bulk rain gauges and flushing rain gauges, for deposition of both TDN and DON, suggesting biological conversion and loss of inorganic N in the flushing samplers.  相似文献   

12.
Savage C 《Ambio》2005,34(2):145-150
This paper reviews the use of stable nitrogen isotopes (delta15N) to delineate the influence of sewage nitrogen (N) in coastal ecosystems, drawing extensively on the case of Himmerfj?rden, a Baltic Sea bay that receives 15N-enriched tertiary treated sewage that is discharged mainly as dissolved inorganic N (DIN). Gradients of delta15N in macroalgae (Fucus vesiculosus) and surface sediments traced sewage-derived N to 24 km from the outfall but elevated delta15N values (> 7 per thousand) indicated that the sewage influence was most pronounced within 10 km. Comparison of macroalgal delta15N values before and after enhanced tertiary treatment showed a decrease in the spatial impact of sewage N from about 24 km to 12 km from the outfall and a decrease to more marine delta15N values in more recent growth tissues. Sedimentary delta15N records showed that sewage has had a dominant influence on organic matter production in the bay with dramatic increases in sedimentary delta15N during the years of maximum sewage N loads. In cases where sewage N introduces a distinct isotopic signature into a system and where it has had a dominant influence on organic matter production, delta15N values in biota and sediments can be used to trace the spatial and temporal influence of sewage N in aquatic ecosystems.  相似文献   

13.
The role of detrital quantity and quality in forest floor N leaching was investigated in a litter manipulation experiment at a deciduous forest under chronic N deposition. Dissolved inorganic nitrogen (DIN) comprised the bulk of nitrogen leaching from the control except a short period following autumn litterfall. The dominance of DIN was strengthened by litter exclusion, whereas the addition of glucose or fresh litter led to a small increase in dissolved organic nitrogen (DON) and either a temporary or gradual reduction in NO(3)(-) release, respectively. Changes in soluble organic C and microbial C in the forest floor implied that increased availability of C sources might have enhanced microbial immobilization of DIN, either temporarily following glucose application or over the longer term following litter addition. The results suggest that detrital quantity and quality can play a crucial role in determining the balance between DIN and DON in N-enriched forest soils.  相似文献   

14.
Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.  相似文献   

15.
Hole L  Engardt M 《Ambio》2008,37(1):9-17
A high-resolution chemical transport model, driven by meteorology representing current and future climate, was used to investigate the effects of possible future changes in climate on nitrogen deposition in northwestern Europe. The model system was able to resolve the climatology of precipitation and chemical properties observed in northern Europe during the 1980s, albeit with some underestimation of the temporal and spatial variability of meteorological parameters and chemical components. The results point toward a substantial increase (30% or more) in nitrogen deposition over western Norway as a consequence of increasing precipitation but more moderate changes for other areas. Deposition of oxidized nitrogen will increase more than the deposition of reduced nitrogen. Over Sweden, oxidized nitrogen will increase only marginally and reduced nitrogen will decrease, although annual precipitation is expected to increase here as well. This is probably because more reduced nitrogen will be removed further west in Scandinavia because of the strong increase in precipitation along the Norwegian coast. The total deposition of oxidized nitrogen over Norway is expected to increase from 96 Gg N y(-1) during the current climate to 107 Gg N y(-1) by 2100 due only to changes in climate. The corresponding values for Sweden are more modest, from 137 Gg N y(-1) to 139 Gg N y(-1).  相似文献   

16.
Environmental Science and Pollution Research - Microplastics (MPs) correspond to plastics between 0.1 μm and 5 mm in diameter, and these can be intentionally manufactured to be microscopic or...  相似文献   

17.
A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems.  相似文献   

18.
Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.  相似文献   

19.
The conditional time averaged gradient method was used to measure air-surface exchange of nitrogen and sulphur compounds at a semi-alpine site in Southern Norway. Dry deposition velocities were then obtained from the bi-weekly concentration gradient measurements. Annual deposition velocities were found to be 1.4, 11.8 and 4.0 mm s(-1) for NH3, HNO3 and SO2, respectively, if all data were included, and to be 10.8, 11.8 and 13.0 mm s(-1), respectively, if only positive values were included. Measured deposition velocities were compared to two sets of values estimated from a big-leaf dry deposition module applying to two different land types (short grass and forbs, and tundra), driven by measured micrometeorological parameters. The deposition module gives reasonable values for this site throughout the year, but does not reproduce the large variability as shown in the measured data. No apparent seasonal variations were found from either measurements or module estimates due to the very low productivity of the studied area.  相似文献   

20.

The Beiyun river flows through a hot spot region of Beijing-Tianjin-Hebei in China that serves a majority of occupants. However, the region experiences severe nitrate pollution, posing a threat to human health due to inadequate self-purification capacity. In that context, there is an urgent need to assess nitrate levels in this region. Herein, we used δ15N-NO3, δ18O-NO3 isotopes analysis, and stable isotope analysis model to evaluate the nitrate source apportionment in the Beiyun river. A meta-analysis was then used to compare the potential similarity of nitrate sources among the Beiyun riverine watershed and other watersheds. Results of nitrate source apportionment revealed that nitrate originated from the manure and sewage (contribution rate: 89.6%), soil nitrogen (5.9%), and nitrogen fertilizer (3.9%) in the wet season. While in the dry season, nitrate mainly originated from manure and sewage (91.6%). Furthermore, different land-use types exhibited distinct nitrate compositions. Nitrate in urban and suburban areas mostly was traced from manure and sewage (90.5% and 78.8%, respectively). Notably, the different nitrate contribution in the rural-urban fringe and plant-covered areas were manure and sewage (44.3% and 32.8%), soil nitrogen (26.9% and 35.7%), nitrogen fertilizer (23.5% and 29.4%), and atmospheric deposition (5.3% and 2.0%). Through a meta-analysis, we found nitrogen fertilizer, soil nitrogen, and manure and sewage as the main nitrate sources in the Beiyun riverine watershed or the other similar complexed watersheds in the temperate regions. Thus, this study provides a scientific basis for nitrate source apportionment and nitrate pollution preventive management in watersheds with complexed land-use types in temperate regions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号