首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
臭氧水中传质模型的研究   总被引:4,自引:0,他引:4  
在传统鼓泡塔中对臭氧在水中的传质过程进行实验研究。利用实验改变进水流量、臭氧进气流量以及臭氧进气浓度等,得到臭氧传质系数、臭氧传质效率和臭氧消耗等有关参数。建立一个臭氧传质模型,可以预测不同操作条件下臭氧传质效率,从而优化控制臭氧化反应动力学。  相似文献   

2.
Abstract

Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenan-threne vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 μm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, α = (1.4 ± 0.4) × 10?2 was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small α = (9.7 ± 1.8) × 10?5 was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.  相似文献   

3.
填料塔中Na2CO3吸收高浓度H2S的传质特性   总被引:1,自引:0,他引:1  
在填料吸收塔中考察了Na2CO3溶液吸收高浓度H2S气体的气液传质特性。通过测量填料塔进出口气体中H2S浓度计算了Na2CO3溶液吸收高浓度H2S气体的总体积传质系数(KGa),并研究了进气流速、吸收液流量、吸收温度和吸收液浓度对KGa的影响。结果表明,KGa随Na2CO3浓度、吸收液流量的增加而增加,随吸收温度、进气流速的升高而降低;在高浓度H2S吸收过程中液相传质阻力不能忽略。  相似文献   

4.
水体中化学需氧量的快速测定   总被引:1,自引:0,他引:1  
介绍了一种快速测定水体中COD的新方法,该法将近红外光谱分析技术中的化学计量学方法应用到紫外可见光区域,对水体进行COD测试,并将结果和标准试验方法进行比较,取得了令人满意的结果。  相似文献   

5.
- DOI: http://dx.doi/10.1065/espr2006.01.016 Background and Goal Agricultural practices can affect the quality of aquifers given that they are often located in cropped areas, so significant amounts of pesticides can be found in the water. In particular, triazine herbicides are always carefully checked by the official monitoring systems. The goal of this study was to find the mean concentration of terbuthylazine in an Italian aquifer and to set up a mass balance of this compound. Methods Terbuthylazine concentrations in the aquifer were measured in various check-wells during 1998–2004, and the value of censored data were estimated using a Gompertz inverse in order to evaluate the overall mean concentration. The total terbuthylazine load in the recharge area was calculated on the basis of surveys of cropped land and the main weed control techniques applied in the area. Data on aquifer water balance were obtained from previous studies. Results and Discussion The herbicide terbuthylazine applied in the recharge zone can be transported by surface water and enter the aquifer. Detected concentrations were always well below the EU drinking water limit and the fraction that can reach the groundwater under normal cropping practices is small, very likely less than 0.2%. Recommendations and Outlook The use and application rates of pesticides should be strictly regulated in recharge areas. Vegetated buffer strips can mitigate the impact of herbicides on surface water through reducing drift and early-spring runoff. Attention should also be paid to the fate of the main metabolites from soil biochemical processes.  相似文献   

6.
Background N-methylcarbamate insecticides are widely used chemicals for crop protection. This study examines the hydrolytic and photolytic cleavage of benfuracarb, carbosulfan and carbofuran under natural conditions. Their toxicity and that of the corresponding main degradation products toward aquatic organisms were evaluated. Methods Suspensions of benfuracarb, carbosulfan and carbofuran in water were exposed to sunlight, with one set of dark controls, for 6 days, and analyzed by 1H-NMR and HPLC. Acute toxicity tests were performed on Brachionus calyciflorus, Daphnia magna, and Thamnocefalus platyurus. Chronic tests were performed on Pseudokirchneriella subcapitata, and Ceriodaphnia dubia. Results and Discussion Under sunlight irradiation, benfuracarb and carbosulfan gave off carbofuran and carbofuran-phenol, while only carbofuran was detected in the dark experiments. The latter was degraded to phenol by exposure to sunlight. Effects of pH, humic acid and KNO3 were evaluated by kinetics on dilute solutions in the dark and by UV irradiation, which evidenced the lability of the pesticide at pH 9. All three pesticides and phenol exhibited acute and higher chronic toxicity towards the aquatic organisms tested. Conclusion Investigation on the hydrolysis and photolysis of benfuracarb and carbosulfan under natural conditions provides evidence concerning the selective decay to carbofuran and/or phenol. Carbofuran is found to be more persistent and toxic. Recommendations and Outlook The decay of benfuracarb and carbosulfan to carbofuran and the relative stability of this latter pesticide account for many papers that report the detection of carbofuran in water, fruits and vegetables.  相似文献   

7.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   

8.
Background Frequent application of Bordeaux mixture, which includes copper, as a fungicide in fruit and grape orchards may lead to copper accumulation in the soil, especially when orchard age and application times increase. The objectives of this study were: (i) to investigate the copper content and its spatial distribution in orchard soils; (ii) to identify the copper fractionation in soil and its relationship with plant uptake; (iii) to understand the characteristics of copper contamination in orchard soils. Materials and Methods Soil profile samples were taken in apple orchards with ages of 0, 5, 10, 20, 30 years and pot experiments were also carried out to study the effects of external copper input on copper fractionation. All soil samples were air-dried, ground and extracted with 0.43 mol L–1 HNO3 for the total absorbed copper. Fractionation determination was conducted following Tessier and Shuman sequential extraction methods, and copper was measured with AAS. Plant samples were first dry ashed, dissolved with 6 mol L–1 HCl and then copper and other elements were measured with ICP-MS.Results and Discussion Soil total Cu was higher in the apple orchards than that in non-orchard fields and was seen to have increased with orchard age. Soil Cu increased substantially with the average annual copper increase, ranging from 2.5 to 9 mg Cu kg–1. The distribution of copper in the soil profile was uneven, decreasing from surface to deeper layers, and the differences were significant, but the contents in every layer were also significantly correlated with those in the next layers. For all copper fractions, the organically bound, crystalline Mn oxide bound, and amorphous Fe bound fractions extracted with the Shuman method were much higher than the exchangeable and residual fractions. Using the Tessier method, organically bound, carbonate bound and Fe-Mn oxide bound fractions were much higher. With an increase in external copper input, the organically bound, crystalline Mn oxide bound and amorphous Fe bound fractions in the Shuman method and organically bound, carbonate bound and Fe-Mn oxide bound fractions in the Tessier method all increased significantly, while the changes in other fractions were not significant. Soil total copper and copper fractions were found to have good correlations with apple tree uptake. Copper in fruit flesh had significant correlations with soil total content in the 0–10 cm layer, all the copper fractions in the 0–5 cm layer, and some fractions in the deeper layers. Conclusion Copper content in orchard soils increased significantly with intensive application of Bordeaux mixtures and orchard age. Copper content decreased sharply from the topsoil to deeper soil layers. The copper contents in different layers also significantly correlated with those in the next layers. Dominant fractions of the copper in soil were mainly associated with organic matter, iron and manganese oxides and carbonates. A close relationship was found between the copper content in soils and in apple tree organs (which contained 8.9 to 66mg kg–1 Cu). Recommendation and Perspective Though most copper in the soil was specifically adsorbed or immobilized, and copper was mainly distributed in topsoil, which was essentially devoid of roots, the copper concentration of fruit still had significantly positive correlations with soil copper and most copper fractions. Therefore, measures must be taken to control copper accumulation in orchard soils and to make the apple fruit production sustainable.  相似文献   

9.
Intention, Goal, Scope, Background Aquatic plants have a great potential to function as in situ, on-site biosinks and biofilters of pollutants. They are used for phytoremediation and phytotoxicity studies. Pesticide uptake studies are very important to predict contaminant accumulation, translocation, and transformation. There are a lot of models which have been developed for emergent plants, but there are not any existing models for submerged aquatic plants for assessing pesticide uptake. Objective In this study, uptake of selected pesticides in parrotfeather (Myriophyllum aquaticum) were studied and the results were modeled with the aid of Log Kow and the concentration of pesticides. At the end, the developed model was compared to other existing models. Methods The test was conducted with parrotfeather as a model plant. The bioassay and cultivation of this plant were examined. Pesticide uptake by roots and shoots was determined using 14C-radiolabeled materials. Results and Discussion The results were fitted with an equation that showed a relationship between uptake and lipophilicity of pesticides. The model was compared with other pesticide uptake models developed for other plants. Atrazine and cycloxidim were taken up more by roots than by shoots in comparison to other pesticides used. The total uptake, both in shoots and roots, was lower than for terbutryn and trifluralin. The best appropriate model was developed from the results against the other models seen in the literature. The concentration factors (Root Concentration Factor (RCF) and Submerged Shoot Concentration Factor (SSCF)) increased with a higher Kow of the substances. The Submerged Shoot Concentration Factor (SSCF) revealed a better relationship of the chemicals than did the Root Concentration Factor (RCF). Conclusions In this study, an uptake model was developed for rooted, submerged aquatic plants. Further studies are necessary to develop and compare models with different plants and pesticides. Recommendation and Outlook Such studies as this one may be extended to other environmental pollutants in the aquatic ecosystem and may be employed to evaluate the possibility of using different plants in phytoremediation studies.  相似文献   

10.
Background Phytoextraction of contaminated soils by heavy metals can provide a great promise of commercial development. Although there are more than 400 species of hyperaccumulators found in the world, phytoremediation technology is rarely applied in field practice for remedying contaminated soils, partially due to low biomass and long growth duration for most of discovered hyperaccumulating plants. In order to enhance the metal-removing efficiency in a year, the two-phase planting countermeasure of phytoextraction by harvesting anthesis biomass was investigated on the basis of the newly found Cd-hyperaccumulator Rorippa globosa (Turcz.) Thell. with 107.0 and 150.1 mg/kg of the Cd accumulation in stems and leaves, respectively, when soil Cd added was concentrated to 25.0 mg/kg. Methods The field pot-culture experiment was used to observe the distribution property of R. globosa aboveground biomass and to examine characteristics of accumulating Cd by the plant at different growth stages. The concentration of Cd in plants and soils was determined using atomic absorption spectrophotometry (AAS). Results and Discussion The results indicated that the total dry stem and leaf biomass of R. globosa harvested at the flowering phase was up to 92.3% of that at its full maturity and the concentration of Cd in stems and leaves harvested at the flowering phase was up to 73.8% and 87.7% of that at the mature phase, respectively. The Cd-removing ratio by shoots of R. globosa harvested at the flowering phase was up to 71.4% of that at the mature phase. It was also found, by observing the growth duration of R. globosa, that the frostless period at the experiment site was twice as long as the growth time from the seedling-transplanted phase to the flowering phase of the hyperaccumulator. Conclusion R. globosa could be transplanted into contaminated soils twice in one year by harvesting the hyperaccumulator at its flowering phase based on climatic conditions of the site and traits of the plant growth. In this sense, the extraction efficiency of Cd in shoots of R. globosa increased 42.8% compared to that of at its single maturity when the plant was transplanted into contaminated soils after it had been harvested at its flowering phase and the plant accumulated Cd from soil at the same extraction ratio at its second flowering phase. Thus, the method of anthesis biomass regulation by the two-phase planting is very significant to increase the Cd-removing efficiency by phytoremediation used in practice over the course of a year. Recommendation and Outlook As for some hyperaccumulators that the growth duration from the seedling-transplanted phase to the flowering phase are short and the concentrations of heavy metals accumulated in their shoots at the flowering phase are high, the efficiency of phytoremediation can greatly be improved using the method of the two-phase planting.  相似文献   

11.
Background LCA is the only internationally standardized environmental assessment tool (ISO 14040-43) for product systems, including services and processes. The analysis is done ‘from cradle-to-grave’, i.e. over the whole life cycle. LCA is essentially a comparative method: different systems fulfilling the same function (serving the same purpose) are compared on the basis of a ‘functional unit’ - a quantitative measure of this function or purpose. It is often believed that LCA can be used for judging the (relative) sustainability of product systems. This is only partly true, however, since LCA is restricted to the environmental part of the triad ‘environment/ecology - economy - social aspects (including intergenerational fairness)’ which constitutes sustainability. Standardized assessment tools for the second and the third part are still lacking, but Life Cycle Costing (LCC) seems to be a promising candidate for the economic part. Social Life Cycle Assessment still has to be developed on the basis of known social indicators.Method and Limitations LCA is most frequently used for the comparative assessment or optimization analysis of final products. Materials and chemicals are difficult to analyse from cradle-to-grave, since they are used in many, often innumerable product systems, which all would have to be studied in detail to give a complete LCA of a particular material or substance! This complete analysis of a material or chemical is evidently only possible in such cases where one main application exists. But even if one main application does exist, e.g. in the case of surfactants (chemicals) and detergents (final products), the latter may exist in a great abundance of compositions. Therefore, chemicals and materials are better analysed ‘from cradle-to-factory gate’, leaving the analysis of the final product(s), the use phase and the ‘end-of-life’ phases to specific, full LCAs.Conclusion A comparative assessment of production processes is possible, if the chemicals (the same is true for materials) produced by different methods have exactly the same properties. In this case, the downstream phases may be considered as a ‘black box’ and left out of the assessment. Such truncated LCAs can be used for environmental comparisons, but less so for the (environmental) optimization analysis of a specific chemical: the phases considered as ‘black box’ and left out may actually be the dominant ones. A sustainability assessment should be performed at the product level and contain the results of LCC and social assessments. Equal and consistent system boundaries will have to be used for these life cycle tools which only together can fulfil the aim of assessing the sustainability of product systems.  相似文献   

12.
Background For their high photoreactivity, Fe(III)-carboxylate complexes are important sources of H2O2 for some atmospheric and surface waters. Citrate is one kind of carboxylate, which can form complexes with Fe(III). In our previous study, we have applied Fe(III)-citrate complexes to degrade and decolorize dyes in aqueous solutions both under UV light and sunlight. Results have shown that carboxylic acids can promote the photodegradation efficiency. It is indicated that the photolysis of Fe(III)-citrate complexes may cause the formation of some reactive species (e. g. H2O2 and ·OH). This work is attempted to quantify hydroxyl radicals generated in the aqueous solution containing Fe(III)-citrate complexes and to interpret the photoreactivity of Fe(III)-citrate complexes for degrading organic compounds. Methods By using benzene as the scavenger to produce phenol, the photogeneration of ·OH in the aqueous solution containing Fe (III)-citrate complexes was determined by HPLC. Results and Discussion In the aqueous solution containing 60.0/30.0 mM Fe(III)/citrate and 7.0 mM benzene at pH 3.0, 96.66 mM ·OH was produced after irradiation by a 250W metal halide light (l ≥ 313 nm) for 160 minutes. Effects of initial pH value and concentrations of Fe(III) and citrate on ·OH radical generation were all examined. The results show that the greatest photoproduction of ·OH in the aqueous solution (pH ranged from 3.0 to 7.0) was at pH 3.0. The photoproduction of ·OH increased with increasing Fe(III) or citrate concentrations. Conclusion In the aqueous solutions containing Fe(III)-citrate complexes, ·OH radicals were produced after irradiation by a 250W metal halide light. It can be concluded that Fe(III)-citrate complexes are important sources of ·OH radicals for some atmospheric and surface waters. Recommendations and Outlook It is believed that the photolysis of Fe(III)-citrate complexes in the presence of oxygen play an important role in producing ·OH both in atmospheric waters and surface water where high concentrations of ferric ions and citrate ions exist. The photoproduction of ·OH has a high oxidizing potential for the degradation of a wide variety of natural and anthropogenic organic and inorganic substances. We can use this method for toxic organic pollutants such as organic dyes and pesticides.  相似文献   

13.
Goal, Scope and Background In this paper, we attempt to elucidate the composition and origin of the orange patina on the surfaces of the West-Porch of Salisbury Cathedral by comparison to other known patinas: (i) the orange-brown patina on the marble surfaces of the Acropolis in Athens and the Arch of Titus in Rome whose analyses have shown very high amounts of phosphates, and generally amino acids from animal-skin glue or other protein binders; (ii) the phosphated patinas which also contain oxalates, found in 1996 on Catalonian calcareous sandstones and in the calcareous dolomites of the Monastery of Silos, Spain, whose origin is either the application of calcium caseinate, or egg yolk and animal glue; and (iii) the patinas with only oxalates found in some of Verona's monuments (St Zeno) and Spanish sites as in the Monastery of Guadalupe and Cuenca cathedral, formed either by the mineralization of algal filaments or by biological reactions yielding oxalate from yolk egg (added to stone as part of preservative empirical treatments). Methods In the winter of 2003, the West-Porch of Salisbury Cathedral received conservation works, but the old patina was not entirely removed. This fact has allowed us to collect the samples for its study. The IR spectra were registered with a Golden Gate ATR Mk II system using attenuated total reflectance Fourier transform infrared (ATR/FTIR) spectrometry. Mineral composition was determined by XRD (Philips PW 1710 spectrometer with Cu tube), whereas major and trace elements analyses were performed by XRF (Philips PW1480 PW). Microscopy examination was performed on a Leica M655 microscope. Phosphate, oxalate, calcium and sulphate contents were analysed by usual chemical methods. Results ATD-FTIR spectra of the Salisbury's patina exhibit peaks at 2361, 2341 and 671 cm–1 (assigned to phosphates); 3410, 1680, 1620, 1122 and 602 cm–1 (assigned to sulphates); and 1447/1437 and 876 cm–1 (attributed to carbonates). The little peaks at 1620 and 798 cm–1 could be assigned to oxalates. XRD and XRF have led to identify the carbonates, phosphates and sulphates as pertaining to the species dolomite, hydroxyapatite and gypsum, respectively. Oxalates are detected only in small amounts by chemical analyses but wewellite and weddellite have not been well identified. The interface between the patina and the calcareous dolomite is very uneven and full of cavities in certain cases, but well-defined and rather smooth in other cases. In accord with the very small amounts of the oxalates found, remnants of micro-organisms are not detected in the patinas. Discussion The Salisbury's patina is a composite material formed by particulates and matrix constituents. Regarding the patina particulate, e.g. animal bones, it is necessary to refer to the apatite phase composition. The bone mineral contains 4–8 wt % of carbonate in animal body and its presence in the apatite phase is advantageous as it increases the mechanical strength. We think that FTIR bands at around 1440 and 876 cm–1 arise from vibration of CO32– ions, but not necessarily from the limestone. They could be attributed to carbonated hydroxyapatite through the substitution of groups PO43– for CO32– in the lattice of hydroxyapatite. Concerning the matrix and also from the FTIR spectra, the absence of specific bands of the following species: proteins (3350–3225, 1660, 1550–1535, 1270–1230 and 620 cm–1), oils (1778, 1738 and 1051 cm–1), bee waxes (3000, 1470, 720–730 and 1700 cm–1) and aged egg-yolk (2954, 2920, 2850, 1650, 1549, 1465 and 1240 cm–1) had led us to exclude these usual binders. On the other hand, the amount of sulphates in the paste that covers the walls of the Salisbury's Cathedral is excessively high (above 20% in weight) to consider it as a biotransformation product of calcium oxalate from fungal biofilms. Consequently, we must think that the gypsum found in the samples has a man-made origin (it was deliberately added as part of a protective paste) and that it is the matrix searched for. Thus, we deduce that the patina of Salisbury's Cathedral is a special stucco made mixing plaster with powdered bone (the colour of the bones is the same that it exhibits in the patina), low quantities of an uncharacterized binder (collagen, possibly) and water. Conclusion We believe that the patina of the Salisbury's Cathedral is a variant of the Greco-Latin empirical protective treatment that included bone as a hardening material. Nevertheless, we also think that the presence of the bones in the paste could be related to an aesthetical intention: gaining a warm tone for the original stone through the ochre colour of the bones. Recommendation and Perspective Our results have been an excuse to contribute to the controversy started at the 80's on the origin of orange-brown patinas observed on stone surfaces of Greco-Latin and medieval monuments. There are two major theories on provenance: biological vs. man-made. In Salisbury Cathedral, neither of them has been proven through scientific evidence as yet. Our opinion is that Salisbury patina can be classified into the man-made group.  相似文献   

14.
Background Many contaminated sites contain a variety of toxicants. Risk assessment and the development of soil quality criteria therefore require information on the interaction among toxicants. Interactions between heavy metals are relatively well studied, but little is known about those between heavy metals and polycyclic aromatic hydrocarbons (PAHs). Methods 0.1 mg/kg dry soil phenanthrene alone or phenanthrene plus 10 mg/kg cadmium (Cd) were added to soil to determine the influence of phenanthrene on Cd toxicity to soil enzymes (invertase, urease, dehydrogenase and phosphatase) and microorganisms (fungi, bacteria and actinomycete) in paddy soil. Results and Discussion 0.1 mg/kg phenanthrene did not reduce the number of microorganisms. However, the addition of phenanthrene to soil with Cd enhanced the Cd toxicity to soil enzymes and microorganisms. This deleterious effect was seen to mainly affect the growth of fungi and the activity of invertase, urease and dehydrogenase. The order of combined inhibition of Cd and phenanthrene was fungi>bacteria>actinomycete. Conclusion The presence of phenanthrene might enhance the toxicity of Cd to soil microorganisms. Phenanthrene can easily be used by the soil actinomycetes as a source of carbon and energy and the finding may be supportive to the development of bioremediation techniques.  相似文献   

15.
The photolytic degradation of diazinon, an organophosphorus pesticide, in aqueous medium under assorted pH values was continuously monitored by direct infusion electrospray ionization mass spectrometry (ESI-MS). The results indicated that the UV radiation was quite efficient in promoting the pesticide degradation at the three pH levels evaluated (5, 7 and 8). The m/z of the most abundant ions observed in the mass spectra (MS), in conjunction with the fragmentation patterns of such ionic species (MS/MS data), made possible the proposition of chemical structures for the main by-products formed. As a result, routes for the photodegradation of diazinon in aqueous solution could thus be suggested. In the assays using Artemia salina (brine shrimp) it was verified that the photodegradation products exhibited much lower toxicity than the primary substrate. Aiming at mimicking the conditions ordinarily found in water treatment plants, an additional series of tests was conducted with a solution containing sodium hypochlorite and diazinon. This solution, when not exposed to UV radiation, exhibited high toxicity against the microorganisms. Under the influence of UV radiation, however, the toxicity rates decreased dramatically. This result is relevant because it points toward the confident application of UV radiation to neutralize the deleterious effects caused by diazinon (and perhaps other organophosphorus pesticides) as well as sodium hypochlorite to the environment.  相似文献   

16.
The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1–25 °C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25 °C to 1 °C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence.  相似文献   

17.

Background, Aims and Scope

Vallisneria spiralis Linn., a common, submerged macrophyte, is widely available in quiet waters of lakes, ponds, marshes and streams in Southeast Asia. V. spiralis plays a significant role not only in decreasing eutrophication of water body for its productivity, but also in inhibiting the growth of blue-green algae? The aim of the paper involves the isolation and identification of allelochemicals from extracts of V. spiralis by activity-guided fractionation and column chromatography.

Methods

Leaves of V. spiralis was washed free of debris, air-dried and refluxed in 95% EtOH. The extract was isolated using column chromatography and fractionation with antialgal activity. Potential allelochemicals were analyzed by high-resolution gas chromatography-mass spectrometry (HRGC-MS).

Results

Two fractions with strong antialgal activity were isolated using column chromatography and activity-guided fractionation from the extract of V. spiralis. 2-Ethyl-3-methylmaleimide, dihydroactinidiolide and 4-oxo-β-Ionone were identified in the first fraction, and 3-hydroxy-5,6-epoxy-β-ionone, loliolide, 6-hydroxy-3-oxo-α-ionone and an unknown compound in the second fraction. They had strong inhibitory effects on Microcystis aeruginosa Kütz.

Discussion

2-Ethyl-3-methylmaleimide is a byproduct of photooxidation of chlorophyll, and five other compounds identified were derivatives of β-carotene. HRGC-MS and derivatization technology were used to identify and confirm their molecular structures. The formula of the unknown compound was C16H19NO4. Metabolites of plant pigments had strong inhibitory activities on growth of algae.

Conclusions

Six compounds had been identified in V. spiralis, among them, 2-ethyl-3-methylmaleimide was the main allelochemical, and derivatives of ionone were also potential allelochemicals.

Recommendations and Perspective

. The results of our research could help us to study further mechanisms of inhibitory effect on algae and develop new potential antialgal substances.  相似文献   

18.
BACKGROUND: Triggered by the requirement of Water Framework Directive for a good ecological status for European river systems till 2015 and by still existing lacks in tools for cause identification of insufficient ecological status MODELKEY (http:// www.modelkey.org), an Integrated Project with 26 partners from 14 European countries, was started in 2005. MODELKEY is the acronym for 'Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity'. The project is funded by the European Commission within the Sixth Framework Programme. OBJECTIVES: MODELKEY comprises a multidisciplinary approach aiming at developing interlinked tools for an enhanced understanding of cause-effect-relationships between insufficient ecological status and environmental pollution as causative factor and for the assessment and forecasting of the risks of key pollutants on fresh water and marine ecosystems at a river basin and adjacent marine environment scale. New modelling tools for risk assessment including generic exposure assessment models, mechanistic models of toxic effects in simplified food chains, integrated diagnostic effect models based on community patterns, predictive component effect models applying artificial neural networks and GIS-based analysis of integrated risk indexes will be developed and linked to a user-friendly decision support system for the prioritisation of risks, contamination sources and contaminated sites. APPROACH: Modelling will be closely interlinked with extensive laboratory and field investigations. Early warning strategies on the basis of sub-lethal effects in vitro and in vivo are provided and combined with fractionation and analytical tools for effect-directed analysis of key toxicants. Integrated assessment of exposure and effects on biofilms, invertebrate and fish communities linking chemical analysis in water, sediment and biota with in vitro, in vivo and community level effect analysis is designed to provide data and conceptual understanding for risk arising from key toxicants in aquatic ecosystems and will be used for verification of various modelling approaches. CONCLUSION AND PERSPECTIVE: The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.  相似文献   

19.
Background, Aims and Scope Secondary inorganic aerosol (SIA), i.e. particulate sulphate (S(VI)), ammonium and nitrate (N(V)) is formed from gaseous precursors i.e., sulfur dioxide (S(IV)), ammonia and nitrogen oxides, in polluted air on the time-scale of hours to days. Besides particulate ammonium and nitrate, the respective gaseous species ammonia and nitric acid can be formed, too. SIA contributes significantly to elevated levels of respirable particulate matter in urban areas and in strongly anthropogenically influenced air in general. Methods The near-ground aerosol chemical composition was studied at two stationary sites in the vicinity of Berlin during a field campaign in summer 1998. By means of analysis of the wind field, two episodes were identified which allow to study changes within individual air masses during transport i.e., a Lagrangian type of experiment, with one station being upwind and the other downwind of the city. By reference to a passive tracer (Na+) and estimates on dry depositional losses, the influences of dispersion and mixing on concentration changes can be eliminated from the data analysis. Results and Discussion Chemical changes in N(-III), N(V) and S(VI) species were observed. SIA i.e., N(V) and S(VI), was formed from emissions in the city within a few hours. The significance of emissions in the city was furthermore confirmed by missing SIA formation in the case of transport around the city. For the two episodes, SIA formation rates could be derived, albeit not more precise than by an order of magnitude. N(V) formation rates were between 1.4 and 20 and between 1.9 and 59 % h-1 on the two days, respectively, and S(VI) formation rates were > 17 and > 10 % h-1. The area south of the city was identified as a source of ammonia. Conclusion The probability of occurrence of situations during which the downwind site (50 km downwind of Berlin) would be hit by an urban plume is > 7.4%. Furthermore, for the general case of rural areas in Germany it is estimated that for more than half of these there is a significant probability to be hit by an urban plume (> 8%). The S(VI) formation rates are higher than explainable by homogeneous gas-phase chemistry and suggest the involvement of heterogeneous reactions of aerosol particles. Recommendation and Outlook The possible contribution of heterogeneous processes to S(VI) formation should be addressed in laboratory studies. Measurements at more than two sites could improve the potential of Lagrangian field experiments for the quantification of atmospheric chemical transformations, if a second downwind site is chosen in such a way that, at least under particular stability conditions, measurements there are representative for the source area.  相似文献   

20.
Background, Aim and Scope At present, large-scale paper manufacture involves delignification and bleaching by elemental chlorine free (ECF) or totally chlorine free (TCF) processes. The wastewater is purified by secondary treatment (mechanical, chemical and biological) which removes most of the toxic substances from the discharge. However, we found residual toxicity in the high molecular (> 1000 D) matter (HMWM) of the discharge by test of the RET (reverse electronic transfer) inhibition. This fraction consists mainly of polydisperse lignin (LIG) and carbohydrate (CH) macromolecules. Structural units in these molecules are studied by pyrolysis gas chromatography / mass spectrometry (Pyr-GC/MS). In the present work, our aim was to find out those structural units which could explain the RET toxicity of LIG or CH molecules. We compared statistically RET toxicity values of the HMWM samples from treated wastewaters of pilot pulping experiments and intensity variation of the pyrolysis product gas chromatograms of these samples. This application is a novel study procedure. Methods Pyrolysis products (Py-GC/MS results) and inhibition of RET (reverse electronic transport toxicity) as TU50 and TU20 of HMWM (High Molecular Weight Material; Mw > 1000 D) were compared by multivariate statistics. The samples were from laboratory pilot stages of TCF (Totally Chlorine Free) and ECF (Elemental Chlorine Free) manufacture of softwood pulp. Py-GC/MS was done without and with addition of TMAH (Tetra Methyl Ammonium Hydroxide). The name and structure of each abundant fragment compound was identified from its retention time and mass spectrum compared to authentic reference compounds or literature. Four sets of Toxicity Units (TUs) and GC peak areas of the pyrolysis fragments were obtained. The data were normalized by division with LIG (lignin content of each sample). TU values were dependent and the fragment values independent (explanatory) variables in statistical treatments by SPSS system. Separate analyses of correlations, principal components (PCA) and stepwise multiple linear regression (SMLR) were performed from the four sample sets TCF and ECF with and without TMAH. Results and Discussion From the CH fragments, 2-furfural in TCF, and from the LIG fragments, styrene in ECF showed the highest probabilities to originate from source structures of toxicity. Other possible compounds in concern were indicated to be CH fragment 2-methyl-2-cyclopenten-1-one in ECF and LIG fragments 2-methoxy-4-methylphenol, 4,5-dimethoxy-2-methylphenol and 2-methylphenol in TCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号