首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Pachygrapsus marmoratus is a semi-terrestrial crab and the most common grapsid crab in the intertidal belt of rocky shores throughout the Mediterranean Sea, Black Sea and northeastern Atlantic. In this study, the combined effects of temperature (T), body mass (M), and sex (S) on the routine oxygen consumption rate (R) in P. marmoratus were quantified. The blotted wet body mass of the specimens ranged between 43 mg and 18.0 g, and five test temperatures were used between 13.5 and 28.0°C. Six candidate models that reflected different assumptions regarding the dependence of R on S and T were compared. Model selection was based on Kullback–Leibler’s information theory and Akaike’s information criterion (AIC). The model had the highest support by the data (E is the activation energy, B = 8.618 × 10−5 eV K−1 is Boltzmann’s constant, T a is the absolute temperature in Kelvin, and b the allometric scaling exponent); for P. marmoratus it was found that No sex dependence of R was supported by the data. Following a multi-model inference (MMI) approach, the mean (± SE) allometric exponent was 0.750 (± 0.013) having a 95% (bootstrap) confidence interval of 0.726–0.774. Thus, it was established that P. marmoratus follows Kleiber’s 3/4 law, as seems to be generally true for intertidal crabs. The allometric exponent was independent of temperature as has also been reported for many other marine invertebrates (at normal temperatures). Q 10 values were relatively low, indicating wide thermal tolerance of the species. Model selection based on information theory is recommended for respiration studies, as an effective method in finding a parsimonious approximating model. MMI by model averaging, based on Akaike weights, is an effective way to make robust parameter estimations and deal with model selection uncertainty.  相似文献   

2.
The Almería-Oran Oceanographic Front (AOOF) has been proposed as an effective marine barrier to gene flow between the NE Atlantic Ocean and the Mediterranean Sea for several species. Previous studies using allozymes and mitochondrial DNA have reported a scenario of secondary intergradation between populations of Mytilus galloprovincialis from those basins, with the allelic frequencies of some loci showing abrupt clinal patterns across the AOOF. In this study, we aimed at testing the congruence between six neutral polymorphic microsatellites versus previous data on allozymes and mtDNA-RFLPs, at depicting the population structure of this species in the Iberian Peninsula. Microsatellite genotyping was scored on 17 samples of mussels collected in the Iberian coast, including some areas not sampled before. Microsatellites exhibited larger intrabasin diversity (F SC = 1.72%, ), similar interbasin differentiation (F CT = 2.81%) and fewer allelic clines than allozymes or mtDNA haplotypes. These results fully support the scenario of secondary intergradation with some ongoing gene flow between basins, as proposed in previous analyses. Moreover, this congruence between markers and analyses separated by a 12-year period (1988–2000) confirm the temporal stability of this marine barrier at shaping the Iberian phylogeographic break in M. galloprovincialis. In addition, the genetic continuity between the NE Atlantic (Portugal) and the Alboran Sea seems to be warranted across the Gulf of Cadiz and the Gibraltar strait after the present microsatellite data. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Lesser sandeel (Ammodytes tobianus) is abundant in near-shore areas where it is a key prey. It exhibits the behaviour of alternating between swimming in schools and lying buried in the sediment. We first determined the species’ standard metabolic rate (SMR), critical partial pressure of oxygen and maximal oxygen uptake The sandeel were then exposed to an acute stepwise decline in water oxygen pressure (18.4, 13.8, 9.8, 7.5, 5.8, 4.0, and 3.1 kPa ). Swimming speed and routine- and post-experimental blood lactate levels were measured, in addition to levels associated with strenuous exercise. The SMR was 69.0 ± 8.4 mg O2 kg−1 h−1 and the about seven times as high. The was found to be 4.1 kPa. A rapid decrease (within 1 h) in from 18.4 to 3.1 kPa had no significant effect on routine swimming speed (0.9 ± 0.06 bl s−1), but steady levels at the lowest (3.1 kPa) gradually reduced the swimming speed by 95% after 40 min. The routine blood lactate levels were 2.2 ± 0.6 mmol l−1, while the levels in the strenuously exercised groups were significantly higher with 5.4 ± 1.6 and 5.8 ± 1.3 mmol l−1. The highest levels were observed in post-experimental fish with 7.5 ± 2.7 mmol l−1. We argue that, as sandeel showed no decrease in swimming speed (to offset stress) nor an increased speed to escape the hypoxia, the fish either rely on a low SMR and being a reasonable strong oxygen regulator as a mean to cope when exposed to acute hypoxia, or that the hypoxia simply developed too fast for the fish to decide on an appropriate strategy. Not showing a behavioural response may in the present case be maladaptive, as the consequence was major physiological stress which the fish however appears tolerant towards. The high routine blood lactate levels suggest that anaerobic metabolism is associated with swimming in sandeel, which may be related to the specific lifestyle of the fish where they regularly bury in the sediment.  相似文献   

4.
Atlantic cod, Gadus morhua, were exposed to a progressive stepwise decline in water oxygen pressure Fish swimming speed and indicators of primary and secondary stress (e.g. blood cortisol and lactate) were measured to assess whether a severe shift in physiological homeostasis (i.e. stress) preceded any change in behaviour or vice versa. Swimming speed increased by 18% when was reduced rapidly from 19.9 kPa to 13.2 kPa and was interpreted as an initial avoidance response. However, swimming speed was reduced by 21% at a moderate level of steady (8.4 kPa) and continued to drop by 41% under progressively deep hypoxia (4.3 kPa). Elevations in plasma cortisol and blood lactate indicated major physiological stress but only at 4.3 kPa, which corresponds to the critical oxygen tension of this species. We propose that the drop in speed during hypoxia aids to offset major stress and is adaptive for the survival of cod in extensive areas of low oxygen.  相似文献   

5.
Temperature is one of the most critical environmental factors for fish ontogeny, affecting the developmental rate, survival and phenotypic plasticity in both a species- and stage-specific way. In the present paper we studied the egg and yolk-sac larval development of Pagellus erythrinus under different water temperature conditions, 15°C, 18°C and 21°C for the egg stage and 16°C, 18°C and 21°C for the yolk-sac larval stage. The temperature-independent thermal sum of development was estimated as 555.6 degree-hours above the threshold temperature (the temperature below which development is arrested), i.e. 7°C for the egg and 12.1°C for the yolk-sac larval stage. Higher hatching and survival rates occurred at 18–21°C. At the end of the yolk-sac larval stage, body morphometry differed significantly (p<0.05) between the temperatures tested. The growth rate of the total length increased as temperature rose from 16°C to 18°C, while in the range of 18–21°C it stabilized and was independent of water temperature. The estimated Gompertz growth curve for the yolk-sac larvae of P. erythrinus was (r2=0.992) for the 16°C, (r2=0.991) for the 18°C and (r2=0.981) for the 21°C treatment. The efficiency of vitelline utilization during the yolk-sac larval stage was higher at 18°C.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
This is the first study of the West Greenland offshore population of Pandalus borealis in recent history that covers all larval stages. Shrimp larvae were sampled on the fishing banks off the west coast of Greenland from 63.5°N to 67°N in May, June and July. Abundances decreased during the summer as did cumulated mortality rates [0.06 day–1 (ZI) to 0.04 day–1 (ZVI)]. Modelling stage development time as a function of temperature alone by means of the Blehrádek function gave decreasing stage durations from 22.7 to 16.7 days. Drift buoys showed a northbound current with an average velocity of 0.06 m s–1. Potential spawning grounds of shrimp larvae were located from back-calculation by coupling development times and mortality rates with current velocity. This showed larval transport of up to 500 km. The adult female shrimp abundances were estimated to 0.12–96 females per 100 m2, and locations of the estimated spawning stock agreed with observations from trawl surveys.Communicated by L. Hagerman, Helsingør  相似文献   

7.
The food web of two intertidal seagrass (Zostera marina and Zostera noltii) beds that may be influenced by the seasonal variation in food source abundance was studied in winter and in summer with δ13C and δ15N analysis. In spite of high relative variation of abundance of main primary producers at the two sites, the food web did not vary between winter and summer. The δ13C range of primary producers was wide. Zostera leaves, the most 13C-enriched source, were not consumed directly by grazers. Deposit and filter feeders have a similar δ13C and could use a mix of suspended and sedimented organic particulate matter, largely composed of detritus from macroalgae to seagrass. This trophic pathway allows the local incorporation of the high biomass produced by seagrasses. The wide δ15N range of predators was linked either to a large variety from omnivore to carnivore predators or to the also wide ranges of δ15N of primary consumers.  相似文献   

8.
Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of “respiratory distress” (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate, glucose and osmolality). Herring in hypoxia increased their swimming speed by 11–39% but only when was <8.5 kPa and in an unsteady (i.e. declining) state. In parallel with the shift in behaviour, plasma cortisol also exhibited an increase with plasma osmolality was subject to a transient rise at 8.5 kPa and plasma glucose was generally reduced at However, without any rise in anaerobically derived lactate levels, there was no evidence of respiratory distress at any set We show that a shift in physiological homeostasis is indeed linked with an increase in the swimming speed of herring but the physiological response reflects a hypoxia-induced shift in metabolic fuel-use rather than respiratory distress per se. The significance of this behavioural–physiological reaction is discussed in terms of behavioural-energetic trade-offs, schooling dynamics and the hypoxia tolerance of herring.  相似文献   

9.
Oxygen uptake ( ) of individual mysids was measured in a novel continuous flow respirometer for 24-h periods, and in a sealed chamber respirometer for several hours. Mysids were acclimated 30–100d under conditions which allowed complete life-cycle cultivation. was normalized for mysid size using an unconventional linear regression: log ( ) vs log (body water). Compared to the conventional regression, log ( ) vs log (body mass), the new approach showed two advantages: significantly greater coefficient of determination,r 2, and removal of differences in between sexes. Minimum rates of oxygen uptake measured in the continuous flow respirometer were lower than sealed chamber measurements, and may more accurately reflect standard metabolic rate. Hourly data also showed a daily cycle when adjusted to represent a standard size mysid. Exposure to ca 1.1 mg l-1 naphthalene increased and the range of spontaneous shown by the mysids; exposure to ca 0.1 mgl-1 naphthalene depressed the range of . Both exposures caused aberrations in the daily cycle.  相似文献   

10.
Stable 13C and 15N isotope analyses of scale, bone, and muscle tissues were used to investigate diet and trophic position of North Atlantic bluefin tuna (Thunnus thynnus Linnaeus) during residency in the northwest Atlantic Ocean off the northeast coast of the United States. Adult bluefin tuna scales collected from fish between June and October 2001 were significantly enriched in 13C compared to both muscle and bone across all months, while muscle was significantly enriched in 15N compared to either bone or scale throughout the same period. In muscle tissue, there was evidence of a shift over the summer from prey with 13C values (–17 to –18) that were characteristic of silver hake (Merluccius bilinearis) to species with 13C values of –20 to –21 that were similar to Atlantic herring (Clupea harengus) and sandlance (Ammodytes americanus). Depletion of 15N values in adult scales and bone compared to muscle tissue may be explained by bone and scale samples representing juvenile or life-long feeding habits, isotopic routing, or isotopic differences in amino acid composition of the three tissue types. Adult bluefin tuna were estimated to be feeding at a trophic position similar to pelagic sharks in the northwest Atlantic Ocean, while the trophic positions of yellowfin tuna (Thunnus albacares), albacore tuna (Thunnus alalunga), and juvenile bluefin tuna were indicative of a diet of up to a full trophic position below adult bluefin tuna. The close relationship between the juvenile bluefin 15N values and those of suspension feeders suggests that nektonic crustaceans or zooplankton may contribute significantly to the diet of bluefin tuna, a food source previously overlooked for this species in the northwest Atlantic Ocean.Communicated by J.P. Grassle, New Brunswick  相似文献   

11.
E. Kristensen 《Marine Biology》1989,101(3):381-388
The influence of ventilation activity and starvation on O2 uptake and CO2 production in the polychaete Nereis virens Sars was investigated during September 1986 using worms collected on intertidal flats outside the Nærå Strand estuary, Denmark. The activity level, measured as ventilation rate, , was linearly related to active O2 uptake, , for worms inhabiting artificial burrows (i.e. tubes) in the laboratory. at 16°C was two and four times the extrapolated standard O2 uptake ( =0) when was 100 and 500 ml g-1 h-1, respectively. The use of tubes had no significant effect on N. viren's temporal ventilation pattern, Dv, compared to natural burrows in sediment. The ventilation rate, , however, was 2 to 3 times higher in tubes than in burrows. Starvation affected both ventilation and gas exchange. increased slightly during the first six days remaining constant thereafter. Dv, on the othe hand, decreased during the first six days followed by a gradual increase to Day 20. The observed decrease in Dv (%) from Day 0 to 1 was attributed to insufficient acclimation of the worms. The time integrated ventilation rate, × Dv, increased gradually throughout the 20 d starvation period. and declined rapidly during the first days of starvation. After 10 d the gas exchange reached steady levels at about 50% of the initial rate. The observed decrease in metabolic rate during starvation was explained by a rapid initial reduction in specific dynamic action (SDA) followed by a gradual exhaustion of readily available metabolic reserves, e.g. glycogen and lipids.  相似文献   

12.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

13.
In a recent paper published in this journal, Bonakdari et al. (Environ Fluid Mech 8:1–17, 2008) presented a new formulation of the vertical velocity profile in the central portion of steady fully developed turbulent open-channel flows which is based on an analysis of the Navier–Stokes equations. The predicted mean streamwise velocity profiles presented by the authors represent dip phenomenon (maximum velocity below the free surface). The discusser would like to point out some contradictions and an error in the main demonstration. This error appears in the right-hand side term of the main Eq. 22 (Environ Fluid Mech 8:1–17, 2008) in the parameter α. Our corrected demonstration shows that α is equal to and not to as obtained by the authors (Environ Fluid Mech 8:1–17, 2008). The values of α used by the authors are under-estimated by 1, this difference has a significant effect on velocities and therefore will involve a difference between measured and predicted velocity profiles. Finally, the assumption of at the free surface is in contradiction with predicted velocity profiles.  相似文献   

14.
The age and habitat of the giant squid, Architeuthis sanctipauli Velain, 1877, were determined based on isotopic analyses of the statoliths of three female specimens captured off Tasmania, Australia, between January and March 1996. Assuming that the aragonite of the statoliths formed in equilibrium with seawater, 18O analyses indicated that the squid lived at temperatures of 10.5–12.9°C, corresponding to average depths of 125–250 m and maximum depths of 500 m. The capture records indicated that these squid may have occasionally ranged still deeper, to as much as 1000 m. All the statoliths were labeled with bomb 14C (14C=+22.9 to +44.6), consistent with the depths inferred from 18O. A thin section through one of the statoliths revealed 351 growth increments grouped into check-ring structures every 10–16 increments. A model for statolith growth and the pattern of temporal change in 14C in the water column was used to estimate the ages of the three specimens. These estimates were very sensitive to the choice of depth range over which 14C values were integrated. Assuming that the capture depths represented the maximum habitat depths of these individuals, the calculations suggested an age of 14 years or less. More refined age estimates require a better understanding of the variation of 14C and temperature with depth in the areas in which the squids live.Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
A sharp genetic break separates Atlantic from Indo-Pacific bigeye tuna (Thunnus obesus) populations, as the frequencies of two major mitochondrial (mt) DNA types ( and ) found in this species are different across the tip of southern Africa. The level of nucleotide divergence between mtDNA types and is of the same order as that between reproductively isolated taxa. To further investigate the genetic structure of bigeye tuna over its distribution range and in the contact zone off southern Africa, bigeye tuna samples collected between 1992 and 2001 (including samples from a previous mtDNA survey) were characterized for four nuclear DNA loci and for mtDNA. Nuclear markers did not support the hypothesis that and mitochondria characterize sibling species. Significant allele-frequency differences at one intronic locus (GH2) and one microsatellite locus (µ208) were found between Atlantic and Indo-Pacific samples, although the level of nuclear genetic differentiation (Weir and Cockerhams =0.025 to 0.042) was much lower than in mtDNA ( =0.664 to 0.807). Probabilistic Bayesian assignment of individuals to a population confirmed that southern African bigeye tuna samples represent a simple mixture of individuals from Atlantic and Indian stocks that do not interbreed, with a higher contribution from Indian Ocean individuals (about 2/3 vs. 1/3).Communicated by M.S. Johnson, Crawley  相似文献   

18.
The common octopus, Octopus vulgaris Cuvier, is of great scientific and commercial importance and its culture is becoming an area of increasing interest. In this study, the combined effects of temperature (T) and body mass (M) on the routine oxygen consumption rate (R) and ammonia excretion rate (U) in O. vulgaris were quantified. The experiments were conducted in a closed seawater system, and great care was taken to reduce handling stress of the animals. Temperature, salinity, pH and ammonia, nitrite, nitrate and phosphate concentrations were monitored and controlled during the experiment. The following predictive equations were evaluated: at temperatures between 13°C and 28°C and at temperatures between 15.5°C and 26°C (Ta is degrees Kelvin and M in gram). O/N ratios showed that O. vulgaris has a protein-dominated metabolism. No significant relationship between the O/N ratio and body mass or temperature was found. Sex had no significant effect on the oxygen consumption rate or on the ammonia excretion rate. For other octopod species, the dependence of metabolic rate on temperature does not differ with that for O. vulgaris.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

19.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

20.
The volutid snail Zidona dufresnei is a benthic top predator in the Mar del Plata (Argentina) shelf area where it was subjected to unregulated commercial exploitation for more than 20 years. So far there is no stock management, and hitherto even the most basic information on population dynamics of this species is missing. Annual formation of internal shell growth bands visible by x-ray was confirmed by the stable oxygen isotope record in the shell carbonate that reflects seasonal oscillations in water temperature. A Gompertz growth function ( , K=0.211 year–1, t0=5.496) fitted 142 pairs of size-at-age data (30 shells) best. Maximum individual production amounted to 26.8 g shell-free wet mass (SFWM) at 115 mm shell length. Based on a size-frequency distribution derived from commercial catches, annual mortality rate of Z. dufresnei was estimated to be 0.61 (±0.21) year–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号