首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
We utilized landscape and breeding bird assemblage data from three Breeding Bird Survey (BBS) routes sampled from 1965–1995 to develop and test a grassland integrity index (GII) in a mixed-grass prairie area of Oklahoma. The overall study region is extensively fragmented from long-term agricultural activity, and native habitat remnants have been degraded by recent encroachment of woody vegetation, namely eastern redcedar (Juniperus virginiana L.). The 50 individual bird survey points along the BBS routes, known as stops, were used as sample sites. Our process first focused on developing a grassland disturbance index (GDI) as a measure of cumulative landscape disturbances for these sites. The GDI was based on five key landscape variables identified in an earlier species-level study of long-term avian community dynamics: total tree, shrub, and herbaceous vegetation cover indices, overall mean landscape patch size, and grassland patch core size. The GII was then developed based on breeding bird assemblage data. Assemblages were based on commonly used response guilds reflective of five avian life history parameters: foraging mode/location, nesting location, habitat specificity, migratory pattern, and dietary guild. We tested the response of 78 candidate assemblage metrics to the GDI, and eliminated those with no or poor response or with high correlations (redundant), resulting in 13 metrics for use in the final index. Individual metric scores were scaled to fall between 0 and 10, and the cumulative index to range from 0 to 100. Although broader application and refinement are possible, the avian-based GII has an advantage over labor-intensive, habitat-based monitoring in that the GII is derived from readily available long-term BBS data. Therefore, the GII shows promise as an inexpensive tool that could easily be applied over other areas to monitor changes in regional grassland conditions.  相似文献   

2.
Most Great River ecosystems (GREs) are extensively modified and are not receiving adequate protection to prevent further habitat degradation and loss of biotic integrity. In the United States, ecological monitoring and assessment of GREs has lagged behind streams and estuaries, and the management of GREs is hampered by the lack of unbiased data at appropriate spatial scales. Properties of GREs that make them challenging to monitor and assess include difficult sample logistics and high habitat diversity. The U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) has developed a comprehensive, regional-scale, survey-based monitoring approach to assessment of streams and estuaries, but has not yet conducted research on applying these tools to GRE monitoring. In this paper we present an overview of an EMAP research project on the Upper Missouri River (UMR). We summarize the assessment objectives for the study, the design for selecting sample locations, the indicators measured at these sites and the tools used to analyze data. We present an example of the type of statements that can be made with EMAP monitoring data. With modification, the set of methodologies developed by EMAP may be well suited for assessment of GREs in general.  相似文献   

3.
通过调研20世纪90年代以来国外主流水生态评价项目中采用的生境指标,统计了14个类型生境指标的使用频率,并针对不同的河流类型,筛选出物理形态特征、河岸带状况、生境组成、生境复杂性、人类干扰和水质状况等6个类型的11项评价指标,推荐作为长江流域河流生境评价指标.随后,利用层次分析法对国外水生生物评价指标进行了统计分析,并...  相似文献   

4.
The Mid-Atlantic Highlands Assessment (MAHA) included the sampling of macroinvertebrates from 424 wadeable stream sites to determine status and trends, biological conditions, and water quality in first through third order streams in the Mid-Atlantic Highlands Region (MAHR) of the United States in 1993–1995. We identified reference and impaired sites using water chemistry and habitat criteria and evaluated a set of candidate macroinvertebrate metrics using a stepwise process. This process examined several metric characteristics, including ability of metrics to discriminate reference and impaired sites, relative scope of impairment, correlations with chemical and habitat indicators of stream disturbance, redundancy with other metrics, and within-year variability. Metrics that performed well were compared with metrics currently being used by three states in the region: Pennsylvania, Virginia, and West Virginia. Some of the metrics used by these states did not perform well when evaluated using regional data, while other metrics used by all three states in some form, specifically number of taxa, number of EPT taxa, and Hilsenhoff Biotic Index, performed well overall. Reasons for discrepancies between state and regional evaluations of metrics are explored. We also provide a set of metrics that, when used in combination, may provide a useful assessment of stream conditions in the MAHR.  相似文献   

5.
Federal and state environmental agencies conduct several programs to characterize the environmental condition of Chesapeake Bay. These programs use different benthic indices and survey designs, and have produced assessments that differ in the estimate of the extent of benthic community degradation in Chesapeake Bay. Provided that the survey designs are unbiased, differences may exist in the ability of these indices to identify environmental degradation. In this study we compared the results of three indices calculated on the same data, and the assessments of two programs: the Chesapeake Bay Program and the Mid-Atlantic Integrated Assessment (MAIA). We examined the level of agreement of index results using site-based measures of agreement, evaluated sampling designs and statistical estimation methods, and tested for significant differences in assessments. Comparison of ratings of individual sites was done within separate categories of water and sediment quality to identify which indices summarize best pollution problems in Chesapeake Bay. The use of different benthic indices by these programs produced assessments that differed significantly in the estimate of degradation. A larger fraction of poor sites was classified as good by the Environmental Monitoring and Assessment Program’s Virginian Province and MAIA benthic indices compared to the Chesapeake Bay benthic index of biotic integrity, although overall classification efficiencies were similar for all indices. Differences in survey design also contributed to differences in assessments. The relative difference between the indices remained the same when they were applied to an independent dataset, suggesting that the indices can be calibrated to produce consistent results.  相似文献   

6.
Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles.  相似文献   

7.
Ecological risk assessment and risk management call for "state-of-the-science" methods and sound scientific assessments of ecosystem health and stressor effects. In this paper recent developments of periphyton indicators of biotic integrity and ecosystem stressors of streams and wetlands are related in a framework of ecological metrics that can be used to quantify risk assessment and risk management options. Many periphyton metrics have been employed in past assessments of water quality and a periphyton indices of biotic integrity has been applied by the state of Kentucky. In addition, the sensitivity of species composition of periphytic diatom assemblages has been shown to respond predictably to ecological stressors so that specific pH, conductivity, and total phosphorus in wetlands and streams can be inferred with weighted average indices. Inference of nutrient conditions by diatom indicators of total phosphorus is shown to have sufficient precision to be a valuable complement to one-time measurement of highly variable total phosphorus in streams. Quantitative indices of sustainability and restorability of ecosystem integrity are proposed, respectively, as the changes in ecological conditions that can occur without significant change in ecological integrity or changes that are necessary to restore ecological integrity.  相似文献   

8.
Data from 25 sites were used to evaluate associations between macroinvertebrate assemblages on large woody debris (snags) and environmental variables in the lower San Joaquin and Sacramento River drainages in California as part of the U.S. Geological Survey's National Water Quality Assessment Program. Samples were collected from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 39 taxa for analyses. Only the 31 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis (CCA). TWINSPAN analysis defined four groups of snag samples on the basis of macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics among the groups. These results combined with the results of CCA indicated that mean dominant substrate type, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, percentage of the basin in combined agricultural and urban land uses, and elevation were important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats.  相似文献   

9.
An index of biotic integrity and species richness were used to assess changes in the Presque Isle Bay watershed fish community before and after the elimination of combined sewer overflows (CSOs). The fish community was sampled with a backpack electrofisher in 2011 at 12 stream locations on 4 tributaries of Presque Isle Bay, Erie County, Pennsylvania. All sites were previously sampled in 2001. Significant increases in species richness and index of biotic integrity (IBI) scores were observed in 2011 compared to 2001. The significant increases in species richness and IBI scores occurred following the elimination of 10 CSOs to Garrison Run, 7 CSOs to Cascade Creek, and 37 CSOs to Mill Creek. Despite the increased richness and IBI scores, the fish community remains in poor condition, which may be related to the highly urbanized land use of the watershed. Urban land uses comprise 77 % of the Presque Isle Bay watershed, and in both 2011 and 2001, the watershed as a whole did not meet warm-water habitat criteria. It is unlikely that the fish community will continue to recover without addressing urbanization throughout the watershed.  相似文献   

10.
应用生物完整性理论和方法,研究基于浮游植物生物完整性指数(Phytoplanktonic Index of Biotic Integrity,P-IBI)在海湾生态评价中的方法构建,通过生境区域划分、评价因子选择、阈值确定等构建适合海湾的P-IBI生态健康评价指标体系,并以北部湾为例开展应用与验证。基于P-IBI的北部湾生态健康评价结果显示:3个水期中枯水期相对较好,丰水期次之,平水期最差,钦州市茅尾海海域内4个采样点在3个水期评价结果大部分为"差"和"较差",其余大部分采样点都在"一般"及以上。Spearman相关性分析显示,P-IBI均与水质类别正相关。研究结果表明P-IBI指数在北部湾生态健康评价应用与验证结果基本符合实际,应用P-IBI能够较好地开展海湾的生态健康评价,可因地制宜应用于近岸海域生态评价。  相似文献   

11.
Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, 'carp') or black bass (Micropterus spp., 'bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carp and bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984-1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8-4.7 microg g-(1) in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where levels of these metals were high in the past and increased from 1986 to 1995.  相似文献   

12.
Sizing a new reservoir is a challenging task, which normally requires simultaneously a cost-effective, risk-informed, and forward-looking decision analysis with respect to basin-wide hydrological features, environmental quality, and biological integrity. Such a sustainable planning approach takes into account the global trend to balance the needs of economic growth, ecological conservation, and environmental protection. To achieve the goal of sustainability, emphasis in this paper was placed upon the correlation of three physical, chemical, and biological indices, including the dissolved oxygen (DO), the 5-day biochemical oxygen demand (BOD5), and the index of biotic integrity (IBI), for the optimal planning of a reservoir in a river basin. This new methodological paradigm has been employed for sizing an off-stream reservoir in the Hou-Lung River Basin, central Taiwan. The internal linkage between the water quality parameters (DO and BOD5) and the IBI levels further enables us to formulate a special biotic integrity constraint which reflects fish community attributes to suit a relatively low-density and unspecialized freshwater fish fauna in response to the changing water quality conditions in the river basin. The tradeoffs among economic, environmental, and ecological aspects for reservoir sizing can then be based on the river flow patterns, the water demand, the water quality standards, and the anticipated biological integrity in some critical river reaches. Findings in a preliminary case study suggest that an optimal pumping scheme may be smoothly maintained on a yearly basis within a combined multicriteria and multiobjective decision-making process.  相似文献   

13.
Eco-environment quality evaluation is an important research theme in environment management. In the present study, Fuzhou city in China was selected as a study area and a limited number of 222 sampling field sites were first investigated in situ with the help of a GPS device. Every sampling site was assessed by ecological experts and given an Eco-environment Background Value (EBV) based on a scoring and ranking system. The higher the EBV, the better the ecological environmental quality. Then, three types of eco-environmental attributes that are physically-based and easily-quantifiable at a grid level were extracted: (1) remote sensing derived attributes (vegetation index, wetness index, soil brightness index, surface land temperature index), (2) meteorological attributes (annual temperature and annual precipitation), and (3) terrain attribute (elevation). A Back Propagation (BP) Artificial Neural Network (ANN) model was proposed for the EBV validation and prediction. A three-layer BP ANN model was designed to automatically learn the internal relationship using a training set of known EBV and eco-environmental attributes, followed by the application of the model for predicting EBV values across the whole study area. It was found that the performance of the BP ANN model was satisfactory and capable of an overall prediction accuracy of 82.4%, with a Kappa coefficient of 0.801 in the validation. The evaluation results showed that the eco-environmental quality of Fuzhou city is considered as satisfactory. Through analyzing the spatial correlation between the eco-environmental quality and land uses, it was found that the best eco-environmental areas were related to forest lands, whereas the urban area had the relatively worst eco-environmental quality. Human activities are still considered as a major impact on the eco-environmental quality in this area.  相似文献   

14.
Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The objective of this study was to examine the relationship between watershed land use and the integrity of benthic invertebrate communities in eight streams that were assessed over a 3-year period (2001-2003). Sites were selected from coastal Rhode Island watersheds along a residential land-use gradient (4-59%). Using the rapid bioassessment protocol, we collected biological, physicochemical, habitat, and nutrient data from wadeable stream reaches and compared metrics of structure and integrity. Principal component analyses showed significant negative correlation of indicators for stream physicochemical, habitat, and instream biodiversity with increasing residential land use (RLU) in the watershed. The physicochemical variables that were most responsive to percent RLU were conductivity, instream habitat, nitrate, and dissolved inorganic nitrogen (DIN). The positive correlation of DIN with percent RLU indicated an anthropogenic source of pollution affecting the streams. The biotic composition of the streams shifted from sensitive to insensitive taxa as percent RLU increased; the most responsive biological variables were percent Ephemeroptera, percent Scrapers, percent Insects, and the Hilsenhoff biotic index. These data show the importance of land management and conservation at the watershed scale to sustaining the biotic integrity of coastal stream ecosystems.  相似文献   

15.
基于GIS空间分析技术结合CA Markov预测模型,对安宁河流域2000—2018年的土地生态安全进行动态评价及预测。结果表明:安宁河流域土地生态安全指数由北向南递增,垂直差异显著;研究期内预警和风险总占比由27.72%下降至23.84%,良好和安全面积总占比由46.11%上升至51.49%;2000—2018年安宁河流域土地生态安全综合指数呈上升趋势,土地生态发展态势良好;预测结果显示,流域土地生态安全状况将持续好转。安宁河流域土地生态安全虽然总体水平有较大提高,但仍须加强对生态环境的治理力度,推进土地生态安全的可持续发展。  相似文献   

16.
The Lachlan River system of inland New South Wales, which extends into semi-arid areas, is prone to natural extremes of climate and water quality and has been almost entirely modified since European settlement in Australia. We used this system as a proving ground for the mainly qualitative bioassessment metrics for river macroinvertebrates that are used widely in Australia – the EPT (Ephemeroptera, Plecoptera and Trichoptera) index, the SIGNAL (Stream Invertebrate Grade Number Average Level) biotic index and the AUSRIVAS O/E (Australian River Assessment System Observed over Expected) index – plus a recently developed qualitative index, the observed proportion of potential taxa (OPP). We tested these metrics on their ability to discriminate between sites judged to be less disturbed by human activities (reference sites) and sites selected by a semi-random process and therefore expected to have a higher average level of human disturbance (assessment sites). All metrics except the AUSRIVAS O/E index differed significantly between the two types of sites at higher altitudes, with SIGNAL showing the greatest discrimination. Assessment at these altitudes was more effective if based on composite data from multiple mesohabitats rather than data from single mesohabitats. No metric differentiated the two types of sites in the more arid, lowland, floodplain region of the river system. We suggest that Australia relies too heavily on bioassessment concepts developed to assess water pollution in well-watered regions of the Northern Hemisphere. Effective assessment of human impacts on macroinvertebrates in the rivers of inland Australia requires a better understanding of the roles of flow regimes, including flood and drought sequences, and of microhabitat structure and invasive alien species. Quantitative approaches may also be required.  相似文献   

17.
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentation by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales.This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered.On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales.  相似文献   

18.
We tested a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. As a group, wildlife habitat value assessment scores for the marshes ranged from 307-509, or 31-67% of the maximum attainable score. We recorded 6 species of wading birds (Ardeidae; herons, egrets, and bitterns) at the sites during biweekly survey. Species richness (r (2)=0.24, F=4.53, p=0.05) and abundance (r (2)=0.26, F=5.00, p=0.04) of wading birds significantly increased with increasing assessment score. We optimized our assessment model for wading birds by using Akaike information criteria (AIC) to compare a series of models comprised of specific components and categories of our model that best reflect their habitat use. The model incorporating pre-classification, wading bird habitat categories, and natural land surrounding the sites was substantially supported by AIC analysis as the best model. The abundance of wading birds significantly increased with increasing assessment scores generated with the optimized model (r (2)=0.48, F=12.5, p=0.003), demonstrating that optimizing models can be helpful in improving the accuracy of the assessment for a given species or species assemblage. In addition to validating the assessment model, our results show that in spite of their urban setting our study marshes provide substantial wildlife habitat value. This suggests that even small wetlands in highly urbanized coastal settings can provide important wildlife habitat value if key habitat attributes (e.g., natural buffers, habitat heterogeneity) are present.  相似文献   

19.
From November 2000 to September 2001, eight points in the Iberá lagoon were sampled bimonthly. At each point, pH, temperature and dissolved oxygen were measured and invertebrates were collected from the water around macrophytes by mean of a net of 180 μ m pore size. Four biotic indices were calculated and compared, given similar trends. The total number of taxa shows to be a good and simple indicator of water quality. Averaging indices across points we obtained a good positive correlation between indices and temperature. In this ecosystem, multi-habitat sampling must be used in order to obtain a good estimation of ecological integrity. The total number of taxa can be used for water quality assessment.  相似文献   

20.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号