首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate the effect of long-term (11 years) ammonium nitrate additions on standing mass, nutrient content (% and kg ha(-1)), and the proportion of the added N retained within the different compartments of the system. The results showed that more than 90% of all N in the system was found in the soil, particularly in the organic (Oh) horizon. Added N increased the standing mass of vegetation and litter and the N content (kg N ha(-1)) of almost all measured plant, litter and soil compartments. Green tissue P and K content (kg ha(-1)) were increased, and N:P ratios were increased to levels indicative of P limitation. At the lowest treatment, most of the additional N was found in plant/litter compartments, but at higher treatments, there were steep increases in the amount of additional N in the underlying organic and mineral (Eag) horizons. The budget revealed that the proportion of added N found in the system as a whole increased from 60%, 80% and up to 90% in response to the 40, 80 and 120 kg N ha(-1) year(-1) treatments, respectively.  相似文献   

2.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

3.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage for a period of two years five months. Symptoms of forest decline were not reproduced. Adverse effects relating to soil acidification and N saturation were observed and depended on the chemical form of N. The plant-soil system absorbed most of the soil-applied NH(+)(4) at doses of up to 65 kgN ha(-1) year(-1) but only 54% at a dose of 125 kgN ha(-1) year(-1). About 60% of soil-applied NO(-)(3) was absorbed in all treatments. Ammonium treatments acidified the soil, increased base cation leaching, and mobilised acidic cations. Nitrification was not the major source of acidity, however. Nitrate inputs increased soil pH. Critical loads calculated using current criteria were 60-120 and 30-60 kgN ha(-1) year(-1) for ammonium and nitrate, respectively. Ammonium is more likely to damage forest ecosystems, however, illustrating the need for care in the definition of critical loads.  相似文献   

4.
This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.  相似文献   

5.
Conservation tillage mitigates soil loss in cropland because plant residues help protect the soil, but effects on pesticide movement in surface runoff are not as straightforward. Effects of soil disturbance on surface runoff loss of chlorimuron and alachlor were evaluated utilizing runoff trays. Soil in the trays was either disturbed (tilled) and kept bare or was not tilled, and existing decomposed plant residue was left on the surface. Rainfall (25mm, 20min) was simulated 1d after alachlor (2.8kg ha(-1)) or chlorimuron (54g ha(-1)) application, and runoff was collected. Runoff fractions were analyzed for herbicide and sediment. Total alachlor loss from bare plots was greater than that in no-tillage plots (4.5% vs. 2.3%, respectively). More than one-third of total alachlor lost from bare plots occurred in the first l of runoff, while no-tillage plots had less runoff volume with a more even distribution of alachlor concentration in the runoff during the rainfall simulation and subsequent runoff period. In contrast, more chlorimuron was lost from no-tillage plots than bare plots (12% vs. 1.5%) even though total runoff volume was lower in the no-tillage plots (10.6mm vs. 13.6mm). This was attributed to dense coverage with partially decomposed plant residue in no-tillage plots (1652kg ha(-1)) that intercepted chlorimuron. It was likely that chlorimuron, a polar compound, was more easily washed off surface plant residues and transported in runoff.  相似文献   

6.
Separate effects of ammonium (NH4+) and nitrate (NO3-) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha(-1) year(-1) was added to 2 m2 sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO3-. Bryophytes took up predominately NH4+ and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH4+ and NO3- to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition.  相似文献   

7.
The leaching of major ions has been studied since August 1986 in two plots with different nitrogen fertilization levels and in a control plot in a 29-year-old stand of Norway spruce (Picea abies Karst.) in south-central Sweden. The fertilization started in 1967. The two fertilizer levels, both of which have caused a significant stimulation of the tree growth, correspond to an annual input of approximately 35 kg N ha(-1) and 75 kg N ha(-1) respectively, as NH4NO3. Phosphorus fertilizer is also applied. Field and laboratory incubations performed during 1986 showed that nitrification mainly occurs in the plot with the highest fertilization level, in accordance with the fact that nitrate could not be detected in the soil water in the other two plots. Fertilization has increased the ionic strength of the soil solution due mainly to sulphate in the phosphate fertilizer, but also nitrate at the highest fertilization level. This has caused an increase in total aluminium and a decline in pH. The preliminary data reported here are compared with results obtained at Swedish field sites with moderate to high levels of nitrogen deposition.  相似文献   

8.
The field study was conducted to evaluate the effect of municipal solid waste compost (MSWC) as a soil amendment on L-asparaginase (LA) and L-glutaminase (LG) activities. Experiments were conducted during the wet seasons of 1997, 1998 and 1999 on rice grown under a submerged condition, at the Agriculture Experimental Farm, Calcutta University at Baruipur, West Bengal, India. The treatments consisted of control, no input; MSWC, at 60 Kg N ha(- 1); well-decomposed cow manure (DCM), at 60 Kg N ha(- 1); MSWC (30 Kg N ha(- 1)) + Urea (U) (30 Kg N ha(- 1)); DCM (30 Kg N ha(- 1)) + U (30 Kg N ha(- 1)) and Fertilizer, (at 60:30:30 NPK kg ha(- 1)) through urea, single superphosphate and muriate of potash respectively). LA and LG activities alone and their ratio with organic-C (ratio index value, RIV), straw and grain yield were higher in DCM than MSWC-treated soils, due to higher amount of biogenic organic materials like water-soluble organic carbon, carbohydrate and mineralizable nitrogen in the former. The studied parameters were higher when urea was integrated with DCM or MSWC, compared to their single applications. The heavy metals in MSWC did not detrimentally influence the above-measured activities of soil. In the event of long term MSWC application, changes in soil quality parameters should be monitored regularly, since heavy metals once entering into soil persist over a long period.  相似文献   

9.
On an upland moor dominated by pioneer Calluna vulgaris and with an understorey of mosses and lichens, experimental plots were treated with factorial combinations of nitrogen (N) at +0 and +20kg Nha(-1)yr(-1), and phosphorus (P) at +0 and +5kg Pha(-1)yr(-1). Over the 4-year duration of the experiment, the cover of the Calluna canopy increased in density over time as part of normal phenological development. Moss cover increased initially in response to N addition but then remained static; increases in cover in response to P addition became stronger over time, eventually causing reductions in the cover of the dominant Calluna canopy. Lichen cover virtually disappeared within 4 years in plots receiving +20kg Nha(-1)yr(-1) and also in separate plots receiving +10kg Nha(-1)yr(-1), but this effect was reversed by the addition of P.  相似文献   

10.
To obtain an insight into the effects of a high ammonium deposition on trees young, coniferous trees were planted in pots in a greenhouse and treated with artificial ammonium-enriched rainwater. Application of 480 kg ammonium N ha(-1) year(-1) resulted in an increase of the shoot/root ratio. The biomass of fine roots strongly declined, as did the numbers of mycorrhizae. The fructification of the mycorrhizal fungi was totally inhibited. The nitrogen content of the needles was enhanced, but the levels of potassium, magnesium and calcium decreased sharply. The phosphorus content remained almost unaffected. Much of the nitrogen was stored as arginine. The levels of leaf pigments also increased. Within one year of treatment many of the trees died. The trees that were treated with 48 kg ammonium-N ha(-1) year(-1) did not show any signs of deterioration.  相似文献   

11.
Atmospheric deposition and canopy exchange processes in heathland ecosystems   总被引:13,自引:0,他引:13  
The aims of the present study were to determine canopy exchange processes and to quantify total atmospheric deposition of sulphur and nitrogen in heathland. The study was carried out in dry inland heath vegetation, dominated by Calluna vulgaris, in two nature reserves in the eastern part of the Netherlands. Atmospheric deposition was determined with throughfall-stemflow measurements, adapted for low vegetation. Throughflow measurements (sum of throughfall and stemflow) in artificial Calluna canopies showed co-deposition of SOx and NHy upon heathland vegetation. In the real Calluna canopy, a significant part of the deposited ammonia/ammonium was directly assimilated by the Calluna shoots, especially in wet periods. The concentrations of potassium, calcium and magnesium in throughflow, after passage through the Calluna canopy, increased significantly compared with bulk precipitation. The amount of cations lost from the canopy were in good agreement with the observed ammonium uptake by the Calluna. A field experiment demonstrated that losses of the above-mentioned cations can be doubled by application of ammonium sulphate. It was shown that interception deposition is an important component of the atmospheric deposition of sulphur and nitrogen upon Calluna heathland; bulk precipitation amounted to only c. 35-40% of total atmospheric input. Total atmospheric deposition of sulphur and nitrogen in the investigated heathlands was 1.5-2.1 (27-33 kg S ha(-1) yr(-1)) and 2.1-3.1 kmolc ha(-1) yr(-1) (30-45 kg N ha(-1) yr(-1)), respectively. It is concluded that the present atmospheric nitrogen deposition is a continuous threat for the existence of heathlands in Western Europe.  相似文献   

12.
An input-output budget for dissolved inorganic-N in a small forested catchment in North Wales is presented. From 1982 to 1990, bulk precipitation inputs averaged 10.3 kg ha(-1) year(-1), whereas throughfall inputs in 1983-1984 were 20.3 kg ha(-1) year(-1). Streamwater outputs were consistently larger than bulk precipitation inputs, averaging 14.6 kg ha(-1) year(-1). Inorganic-N in the forest stream was predominantly nitrate and concentrations were substantially higher than in a nearby moorland stream. Both streams showed seasonal trends in nitrate concentration, with highest concentrations occurring in summer in the forest stream but in winter in the moorland stream. Nitrate concentration in the forest stream increased with increasing soil temperature up to approximately 7 degrees C and decreased at higher temperatures. Nitrification is thought to be responsible for nitrate production at temperatures both below and above 7 degrees C, but root uptake becomes significant only at the higher temperatures. In the forest, dry deposition and cloudwater inputs of inorganic-N are responsible for increased nitrogen fluxes in throughfall compared with wet deposition. Mineralization and nitrification in excess of plant needs causes the organic soil horizons to act as a net source of dissolved inorganic-N. Nitrogen transformations in the soil lead to soil acidification at a rate of 1.0 keq ha(-1) year(-1).  相似文献   

13.
Effects and implications of reduced and oxidised N, applied under 'real world' conditions, since May 2002, are reported for Calluna growing on an ombrotrophic bog. Ammonia has been released from a 10 m line source generating monthly concentrations of 180-6 microg m(-3), while ammonium chloride and sodium nitrate are applied in rainwater at nitrate and ammonium concentrations below 4mM and providing up to 56 kg N ha(-1) year(-1) above a background deposition of 10 kg N ha(-1) year(-1). Ammonia concentrations, >8 microg m(-3) have significantly enhanced foliar N concentrations, increased sensitivity to drought, frost and winter desiccation, spring frost damage and increased the incidence of pathogen outbreaks. The mature Calluna bushes nearest the NH3 source have turned bleached and moribund. By comparison the Calluna receiving reduced and oxidised N in rain has shown no significant visible or stress related effects with no significant increase in N status.  相似文献   

14.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

15.
Norway spruce seedlings were grown under greenhouse conditions in Rootrainers with a vermiculite-peat moss mixture under various N-regimes for 6 months. Either ammonium or nitrate was applied in loads of 100 or 800 kg N ha(-1) year(-1) to seedlings which were either non-mycorrhizal or inoculated with the mycorrhizal fungi Hebeloma crustuliniforme or Laccaria bicolor. The use of increasing N loads enhanced shoot and total biomass, whereas root/shoot ratio, number of short roots and mycorrhization decreased. A significant enhancement of the concentration and content was obvious for the element N, whereas a significant decrease was obvious for P and Zn concentrations. The use of ammonium, as opposed to nitrate, significantly enhanced the biomass and the numbers of short roots, and reduced the root/shoot ratios, but did not influence the mycorrhization. It further significantly enhanced the N concentrations in roots and shoots. Fungal inoculation with H. crustuliniforme or L. bicolor compared to non-inoculated controls significantly enhanced shoot and total biomass, but reduced root/shoot ratios. The mycorrhization further significantly enhanced N and P concentrations and contents, but reduced Mn. Overall, the mycorrhization improved the P nutrition of the seedlings independently on the applied N loads or N sources. Dose response curves using ammonium nitrate as N source with a maximum load of 1600 kg N ha(-1) year(-1) applied on seedlings associated with H. crustuliniforme revealed that the maximum growth was reached at a load of 800 kg N ha(-1) year(-1) with a simultaneous decrease of the mycorrhization. In both shoots and roots, N concentrations increased constantly with increasing N loads, while P, Ca, and Zn concentrations decreased constantly.  相似文献   

16.
Atmospheric deposition of inorganic nitrogen was studied at two forested sites in the Montseny mountains (northeast Spain), peripheral to the Barcelona conurbation, and at a nearby lowland town, using bulk deposition, wet-only deposition, throughfall, and dry deposition inferred from branch-washes and surrogate surfaces (metacrylate plates). Bulk deposition inputs of ammonium and nitrate did not show significant temporal trends over a 16-year period. Bulk inputs of inorganic N were moderate, ranging from 6 to 10 kg N ha(-1) year(-1) depending on the time period considered and the degree of site exposure to polluted air masses from the Barcelona conurbation. Large dry-sedimented particles played a minor role, since wet-only inputs were virtually identical to bulk inputs. On the contrary, branch- and plate-washes indicated substantial dry inputs of N gases and small particles. Total atmospheric deposition was estimated at 15-22 kg N ha(-1) year(-1), most of it being retained within the studied broadleaved evergreen forests. Ecosystem N availability is thus likely to be increasing in these forests.  相似文献   

17.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

18.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

19.
Anderson R  Wu Y 《Chemosphere》2001,42(2):161-170
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment. Control plots were treated with mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1). Slurry treatment plots were in two blocks and treated with either pig or cow slurry supplied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on 10-cm soil cores were compared with measured P quantity/intensity (Q/I) parameters from fitted sorption and desorption isotherms. Phosphorus affinity constant was found to be significantly and negatively correlated with P loading of soils. Desorption rate coefficient also increased significantly with increase in P loading from slurry, although there was no significant difference between slurry types (cow vs. pig). In contrast, while agronomic measures of P (water-soluble P, Olsen P, calcium chloride-extractable P, degree of P saturation (DPS)) also correlated significantly with P loading and total P (TP) in the soils, there was a separation and significant differences between the cow and pig slurry treatment blocks, with the former being much lower. Phosphorus inputs to pig slurry treated plots were much higher than to equivalent cow slurry plots over the first 15 years of the study but declined sharply over the most recent 10 years to more or less par. Conventional measures of agronomic P such as Olsen P and DPS, measure only P accumulation over the longer term and indicated only the higher content of P accumulating in soil of pig slurry treatments. Risk of P loss estimated by Q/I parameters appeared to show very similar behaviour between the two slurry types in line with more recent manurial additions but in contradiction of P accumulation statistics.  相似文献   

20.
Nitrate nitrogen was measured in runoff and tile-drainage during two years of operation of instrumented, large-scale lysimeters planted to corn (Zea mays L.) and amended with sewage sludge which was applied at rates supplying total N amounting to 2292 kg ha(-) in 1972 and 3286 kg ha(-1) in 1973. Other lysimeters were amended with inorganic fertiliser at the rate of 336 kg N ha(-1) year(-1). Annual losses in runoff and tile-drainage from sludge treatments were 0.9 and 5.1 and 371 and 663 kg NO(3)(-)-N ha(-1). Losses from lysimeters treated with inorganic fertiliser were 1.1 and 3.3 kg NO(3)(-)-N ha(-1) year(-1) in runoff and 31 and 79 kg NO(3)(-)-N ha(-1) year(-1) in tile-drainage. Given the nitrogen inputs accounted for in the study design, unaccounted for losses of 1800 to 2400 kg ha(-1) year(-1) were calculated for sludge and 277 kg ha(-1) year(-1) for inorganic fertiliser treatments. For one year there was a 300 kg ha(-1) increase in N in the lysimeters receiving inorganic fertiliser. Median NO(3)(-)-N concentrations ranged from 8.9 to 14.0 mg litre(-1) in runoff from sludge-treated lysimeters and 3.6 to 5.9 mg litre(-1) in runoff from lysimeters receiving inorganic fertiliser. In tile-drainage the median NO(3)(-)-N concentrations were 148 to 223 mg litre(-1) and 24 to 44 mg litre(-1) for sludge and inorganic fertiliser treatments, respectively. Highest runoff levels occurred in early summer storms, whereas highest tile-drainage concentrations occurred in late winter and early spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号