首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
选择有代表性的3种来源废水(养猪场废水厌氧消化液、鸡粪废水厌氧消化液和污泥厌氧消化液),利用MgO与白云石石灰作为药剂进行磷回收试验,研究不同药剂、药剂投加量和反应时间下3种来源废水中磷的回收效果,通过动力学方程模拟2种药剂的除磷速率,并采用XRD(X射线衍射)、SEM(扫描电镜)对沉淀产物进行表征. 结果表明:投加2种药剂均可实现磷的有效去除与回收,反应沉淀物中含有MAP(磷酸铵镁)和CaCO3,MgO的最佳投加量为200 mg/L,当反应时间为4 h时,PO43--P去除率达85.0%以上;白云石石灰的最佳投加量为500 mg/L,当反应时间为24 h时,PO43--P去除率达80.0%以上. 投加白云石石灰的反应速率较慢,并且反应沉淀物中含有更多的CaCO3. 以处理1 m3原水为例,MgO药剂成本为0.80元,白云石石灰药剂成本为0.25元,显示白云石石灰经济成本更低,是较为理想的磷回收药剂.   相似文献   

2.
探讨了石灰石与石灰投加量配比与反应时间对处理高浓度磷废水效果的影响,并通过激光粒径分析等手段重点考察了出水沉降性能及其与传统石灰法的比较。结果表明:对进水pH为4.5的100 mg/L含磷废水,联合处理石灰石和石灰投加量分别为0.030 0 g和0.070 0 g,石灰石和石灰段反应时间均为10 min时,磷的去除率达99%以上且出水的10 min泥水沉降比比传统石灰法降低25%;除磷产物的体积平均粒径与中值粒径(13.58μm、7.71μm)也明显高于传统石灰法(5.73μm、4.81μm),沉降性能明显提高;联合处理减少了石灰的用量,一方面保证了药剂成本,另一方面降低了出水pH,减少了约25%的回调用酸。  相似文献   

3.
以北京市生活废水为研究对象,考察了液态聚合氯化铝铁及与聚丙烯酰胺(PAM)协同作用下除磷效果及其影响因素。结果表明,液态聚合氯化铝铁与PAM复合作用时对除磷效果有一定的提高,明确了PAM的最佳投加量、最佳搅拌强度、最佳搅拌时间和pH,并得出了影响混凝效果因素的主次顺序为:pH值搅拌时间搅拌强度投加量。  相似文献   

4.
以印染污泥为原料制备的污泥吸附剂通过搅拌-吸附-沉淀一体化装置,对印染废水进行工业试验。试验选取污泥吸附剂投加量、印染废水pH、吸附时间及悬浮物等因素进行考查。结果表明,通过搅拌吸附沉淀装置,吸附剂在酸性条件下处理印染废水,吸附剂投加量为1017.5 g L-1,搅拌吸附时间为117.5 g L-1,搅拌吸附时间为11.5 h,可得到较好的处理效果。在印染废水pH值为5时,吸附剂投加量为10 g L-1,搅拌吸附时间约为60 min,沉淀时间约为45 min的条件下,污泥吸附剂处理后的出水pH为3.96,对废水脱色率为92.65%,COD去除率为47.33%。在工业上可用污泥吸附剂代替活性炭对印染废水进行处理。  相似文献   

5.
用硫酸亚铁-次氯酸钠处理高浓度铜氰废水,主要考察了硫酸亚铁投加量、pH、搅拌时间、次氯酸钠投加量和氧化反应时间对于污水处理效果的影响。得最佳工艺条件为:加硫酸亚铁0.5 g/L,pH8.0,搅拌时间25 min,加次氯酸钠0.7 g/L,氧化反应时间20 min。出水水质达国家一级排放标准GB8978-1996。  相似文献   

6.
通过试验研究了投加石灰法、投加氯化钙法、石灰-氯化钙联合法、石灰-盐酸联合法4种化学沉淀法对除氟吸附剂再生尾液的处理效果和影响因素。结果表明:静置沉淀90min后,使用投加石灰法处理pH值为12、含氟浓度为2 000mg/L的除氟吸附剂再生尾液,处理后残余氟离子浓度大于50mg/L,使用投加氯化钙法,处理后残余氟离子浓度小于20mg/L,使用石灰-氯化钙联合法和石灰-盐酸联合法,处理后残余氟离子浓度均小于10mg/L;4种方法的最佳搅拌强度为150r/min,最佳反应pH值为12左右,最佳静置时间为90min;其中,采用石灰-盐酸联合法处理pH值为12、含氟浓度为2 000mg/L的高氟再生尾液,在石灰投加量超过理论量60%(即为6.231 6g/L),加入65.4mL/L 2M的HCl时,出水可以达到国家污水排放一级标准,且pH值在7左右。  相似文献   

7.
改性粉煤灰处理氨氮废水实验研究   总被引:4,自引:0,他引:4  
采用H2SO4和HCl改性粉煤灰,在酸改性基础上用2mol/L NaOH进行改性。对比了原状粉煤灰,酸改性粉煤灰和酸加碱改性粉煤灰分别处理氨氮废水的效果。研究了pH值、粉煤灰投加量、反应时间对处理效果的影响。对于100mg/L氨氮废水最佳处理工艺:粉煤灰投加量2g,pH 11左右,搅拌时间60 min,静置1h,其氨氮去除率可达84%。  相似文献   

8.
在用铁盐对厌氧段富磷上清液进行化学磷沉淀以实现磷的回收和达标排放的SBR系统中,为了减少铁盐化学除磷残余物可能对生物处理系统的影响,采用Box-Benhnken中心组合试验原理和响应面分析法,选择Fe:P、混凝搅拌强度、絮凝搅拌强度、搅拌时间等为自变量,残余铁离子为响应值,研究自变量之间的交互作用,以期优化化学除磷条件.通过Design-Expert 8.0软件得到1个二次响应曲面模型.得出最佳除磷条件:Fe:P比为1.40:1,搅拌强度为275r/min,快速搅拌时间为30s,絮凝搅拌强度为60r/min,絮凝时间为18min,沉淀时间为20min.在此条件下,化学混凝后残余铁离子浓度为0.37mg/L,化学除磷率大于97.66%.  相似文献   

9.
在用铁盐对厌氧段富磷上清液进行化学磷沉淀以实现磷的回收和达标排放的SBR系统中,为了减少铁盐化学除磷残余物可能对生物处理系统的影响,采用Box-Benhnken中心组合试验原理和响应面分析法,选择Fe:P、混凝搅拌强度、絮凝搅拌强度、搅拌时间等为自变量,残余铁离子为响应值,研究自变量之间的交互作用,以期优化化学除磷条件.通过Design-Expert 8.0软件得到1个二次响应曲面模型. 得出最佳除磷条件: Fe:P比为1.40:1,搅拌强度为275r/min,快速搅拌时间为30s,絮凝搅拌强度为60r/min,絮凝时间为18min,沉淀时间为20min.在此条件下,化学混凝后残余铁离子浓度为0.37mg/L,化学除磷率大于97.66%.  相似文献   

10.
利用二级混凝沉淀+机械过滤器法处理含磷废水,通过做pH、CaCl2的投加量对除磷处理效果影响的小试,确定混凝沉淀最佳条件为pH值为11和CaCl2投加量100mg/L.工程运行现状表明:该法处理磷化废水是可行的,出水能够达到国家污水综合排放标准(GB8978-1996)一级排放标准.  相似文献   

11.
文章采用自主开发的原位生成型动态膜反应器对高磷赤铁矿选矿酸性废水处理进行了实验研究。实验研究结果表明:选矿酸性废水除磷效果与脱磷剂的投加量、速度梯度(G值)、反应时间及pH等因素有关。对于pH2.25~2.56、含磷50mg/L的模拟选矿废水,最佳反应时间1h,速度梯度(G值)63.6,脱磷剂最佳投加量为11.25g/L,废水脱磷率92.47%。选矿酸性废水处理后出水pH升高,不利于实现废酸全部回用。  相似文献   

12.
多孔水化硅酸钙的制备及其磷回收特性   总被引:1,自引:0,他引:1  
为实现磷资源的可持续利用,以环境废弃物电石渣为钙质材料,以白碳黑为硅质材料合成CSH(水化硅酸钙),以该材料为晶种,以结晶形成羟基磷灰石的形式从含磷废水中回收磷,重点研究了不同钙硅比〔c(CaO)/c(SiO2)〕条件下制备的CSH对含磷废水中磷的回收特性. 结果表明,钙硅比为1.8∶1时所得的CSH结构更疏松、表面分布有较多的孔隙, 较大的比表面积使其具有较好的溶钙能力. 钙硅比为1.8∶1的CSH最佳磷回收工艺条件:反应时间为60min,CSH投加量为4g/L,搅拌强度为40r/min. 在该条件下重复除磷15次以后,回收产物中w(P)达到17.56%,说明CSH具有良好的磷回收性能. 对回收磷前后的CSH进行了XRD图谱分析和FTIR分析发现,溶液中的磷主要生成了羟基磷灰石并嵌入到CSH中. 基于回收磷的目的,CSH可以用于处理ρ(P)较高的工业废水,或者是生物除磷系统中的污泥厌氧释磷液中,回收磷后的产品可作为含磷矿石或者磷肥加以利用.   相似文献   

13.
采用O3/US-混凝法去除皮革废水中的磷.结果表明,废水中的磷90%以上是以有机磷形式存在,无法通过单一条件的混凝法去除废水中的磷,臭氧氧化可以将大部分有机磷转为无机磷,该过程在超声的强化下转化率更高.在单因素试验的基础上,以总磷的去除率为响应值,采用Box-Behnken响应曲面法考察了氢氧化钙投加量、臭氧反应时间、聚丙烯酰胺(PAM)投加量、超声波功率4个因素之间的单独及交互作用.结果表明,4个因素影响顺序为:氢氧化钙投加量>PAM投加量>超声波功率>臭氧反应时间,数学模型拟合度高(R■=0.995),利用该模型预测总磷的最大去除率为95.56%,在最佳反应条件:氢氧化钙投加量为718.35 mg·L-1,臭氧反应时间为50.87 min,超声波功率为337.74 W,PAM投加量为22.27 mg·L-1时验证实验结果的总磷去除率为93.68%,与模型预测值偏差1.88%.  相似文献   

14.
论文探讨A型沸石对废水中磷的吸附性能,影响A型沸石对磷吸附的主要因素有吸附温度、灰水比、吸附时间和pH值。通过单因素和正交试验确定在水样体积30mL,A型沸石投加量3g,吸附时间为40~50min,吸附温度25oC,pH值4~5范围内,初始磷浓度小于20 mg/L,A型沸石对磷都有很好的吸附效果。TP去除率达99%以上,对磷的吸附容量约为0.44mg/g,适用于工业废水处理和生活污水的深度除磷。  相似文献   

15.
选取碳酸盐岩处理矿山酸性废水的污泥作为水中磷的去除材料,研究pH、温度、污泥投加量和接触时间对磷去除作用的影响,以及在此过程污泥中重金属的释放情况.试验表明:当水中磷浓度为10 mg/L,温度25℃,接触时间10 min,污泥投加量0.5 g,pH为7时,磷的去除率达到99.9%以上.实验中污泥有少量重金属的释放,但仍...  相似文献   

16.
混凝法处理污水处理厂出水中磷的实验研究   总被引:4,自引:1,他引:3  
采用硫酸铝、PAC、氯化铁和明矾四种混凝剂对城市污水处理厂出水进行除磷实验研究。实验结果表明,四种混凝剂硫酸铝、PAC、氯化铁和明矾的最佳投药量分别为40mg/L、30mg/L、50mg/L和70mg/L,最佳pH范围分别为6.92~8.08、5.92~10.07、6.92~10.07和6.92~8.08,在此最佳条件下,出水中总磷浓度分别为0.18 mg/L、0.03 mg/L、0.17 mg/L和0.19 mg/L,相应的去除率分别为80.85%、96.81%、81.73%和79.73%。处理后出水总磷浓度达到地表水环境质量标准(GB3838-2002)Ⅲ类水质标准(总磷浓度≤0.2mg/L)。  相似文献   

17.
余静  郭新超  孙长顺  陈宣 《环境工程》2022,40(10):49-54
制革废水中四羟甲基氯化磷(THPC)属于有机磷,其结构稳定、难降解、对微生物具有抑制作用,传统的生化处理技术不能有效地处理此类废水。采用Fenton氧化法处理含THPC制革废水,考察H2O2投加量、pH、m(Fe2+)/m(H2O2)、反应时间、紫外光波长等因素对TP和COD去除效果的影响,建立了TP降解的动力学模型。结果表明:在pH=4,H2O2投加量为6667 mg/L,m(Fe2+)/m(H2O2)=1,反应时间为80 min时,TP和COD去除率最高,分别达到43%和83%;紫外光助(波长185 nm)Fenton体系可提高THPC的降解效果;动力学模型研究发现,H2O2投加量分级数(q=1.065)高于有机物的底物分级数(a=0.858),表明Fenton体系降解TP的反应速率主要受H2O2投加量制约。  相似文献   

18.
改性陶粒处理含磷废水研究   总被引:1,自引:0,他引:1  
陶粒经过镧系稀土金属元素改性后处理含磷废水。探讨了改性陶粒的用量、接触时间、温度、原水pH值、原水初始浓度等因素对除磷效果的影响。结果表明:改性后的陶粒对废水中的磷酸盐去除效果较明显,当废水pH值为4~11、磷浓度在0~40mg/L,按改性陶粒与磷质量比为250:1来处理含磷废水,反应时间在5h之内,剩余磷酸盐的浓度〈0.5mg/L,磷的去除率达98%以上,处理后的废水可达排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号