首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Submersible observations during four missions over the North Carolina and Virginia continental slopes (184–900 m) documented the occurrence of large aggregations of mesopelagic fishes and macronektonic invertebrates near or on the bottom. Aggregated mesopelagics formed a layer up to tens of meters deep positioned from a few centimeters to 20 m, usually <10 m, above the substrate. Aggregations were numerically dominated by microvores, notably the myctophid fish Ceratoscopelus maderensis and the penaeid shrimp Sergestes arcticus. Consistently present but in relatively lower numbers, were mesopelagic predators, including the paralepidids Notolepis rissoi and Lestidium atlanticum, the eel Nemichthys scolopaceus, the stomiid fishes Chauliodus sloani and Stomias boa ferox, and squids Illex spp. Near-bottom aggregations do not appear to be an artifact due to attraction to the submersible. Based on submersible observations in three areas in 4 years spanning a decade, near-bottom aggregations of midwater organisms appear to be a geographically widespread and persistent phenomenon along the continental slope of the southeastern US Aggregations may exploit areas of enhanced food resources at the bottom.  相似文献   

2.
Deep-sea corals provide important habitat for many organisms; however, the extent to which fishes and other invertebrates are affiliated with corals or other physical variables is uncertain. The Cape Fear coral mound off North Carolina, USA (366–463 m depth, 33° 34.4′N, 76° 27.8′W) was surveyed using multibeam sonar and the Johnson-Sea-Link submersible. Multibeam bathymetric data (2006) were coupled with in situ video data (2002–2005) to define habitat associations of 14 dominant megafauna at two spatial scales. Results suggested greater habitat specificity of deep-reef fauna than previously documented, with fishes showing greater affinity for certain habitat characteristics than most invertebrates. High vertical profile, degree of coral coverage, and topographic complexity influenced distributions of several species, including Beryx decadactylus, Conger oceanicus, and Novodinia antillensis on the smaller scale (30 × 30 m). On the broad scale (170 × 170 m), several suspension feeders (e.g., N. antillensis, anemones), detritivores (Echinus spp.), and mesopelagic feeders (e.g., Beryx decadactylus, Eumunida picta) were most often found on the south-southwest facing slope near the top of the mound. Transient reef species, including Laemonema barbatulum and Helicolenus dactylopterus, had limited affiliations to topographic complexity and were most often on the mound slope and base. Megafauna at deep-water reefs behave much like shallow-water reef fauna, with some species strongly associated with certain fine-scale habitat attributes, whereas other species are habitat generalists. Documenting the degree of habitat specialization is important for understanding habitat functionality, predicting faunal distributions, and assessing the impacts of disturbance on deep-reef megafauna.  相似文献   

3.
Teleost fishes capture prey using ram, suction, and biting behaviors. The relative use of these behaviors in feeding on midwater prey is well studied, but few attempts have been made to determine how benthic prey are captured. This issue was addressed in the wrasses (Labridae), a trophically diverse lineage of marine reef fishes that feed extensively on prey that take refuge in the benthos. Most species possess strong jaws with stout conical teeth that appear well-suited to gripping prey. Mechanisms of prey capture were evaluated in five species encompassing a diversity of feeding ecologies: Choerodon anchorago (Bloch, 1791), Coris gaimard (Quoy and Gaimard, 1824), Hologymnosus doliatus (Lacepède, 1801), Novaculichthys taeniourus (Lacepède, 1801) and Oxycheilinus digrammus (Lacepède, 1801). Prey capture sequences were filmed with high-speed video at the Lizard Island Field Station (14°40′S, 145°28′E) during April and May 1998. Recordings were made of feeding on pieces of prawn suspended in the midwater and similar pieces of prawn held in a clip that was fixed to the substratum. Variation was quantified among species and between prey types for kinematic variables describing the magnitude and timing of jaw, hyoid, and head motion. Species differed in prey capture kinematics with mean values of most variables ranging between two and four-fold among species and angular velocity of the opening jaw differing seven-fold. The kinematics of attached prey feeding could be differentiated from that of midwater captures on the basis of faster angular velocities of the jaws and smaller movements of cranial structures which were of shorter duration. All five species used ram and suction in combination during the capture of midwater prey. Surprisingly, ram and suction also dominated feedings on attached prey, with only one species making greater use of biting than suction to remove attached prey. These data suggest an important role for suction in the capture of benthic prey by wrasses. Trade-offs in skull design associated with suction and biting may be particularly relevant to understanding the evolution of feeding mechanisms in this group. Published online: 11 July 2002  相似文献   

4.
The hypothesis that the behaviour of deep-sea scavenging fishes is influenced by seasonal input of organic matter from the ocean surface was investigated by observing responses to baits placed on the sea floor at 4800 m depth in the NE Atlantic (48°50′N; 16°30′W) during spring (April 1994). Data from the present study are compared with those from previous studies of the same location made in summer 1989. The first fishes to arrive at baits were the grenadier Coryphaenoides (Nematonurus) armatus and the eel Histiobranchus bathybius, after delays of 28 and 29 min, respectively; these results are not significantly different from those of summer 1989. Similarly, other indices of activity (staying time and swimming speed) showed no evidence of differences between years/seasons. However, the rate of radial dispersal of bait (0.009 m s−1) by C. (N.) armatus was much slower than in all previous studies. A change in the size distribution of C. (N.) armatus to smaller individuals in spring 1994 was also evident. It is suggested that the fish on the abyssal plain may not comprise a steady-state population and that major episodic or seasonal migrations may occur. Received: 18 October 1996 / Accepted: 20 December 1996  相似文献   

5.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

6.
The sinking rates of fecal matter from 7 southern California midwater fish species were investigated. Feces were obtained from 162 specimens of Stenobrachius leucopsarus, Triphoturus mexicanus, Leuroglossus stilbius, Lampanyctus ritteri, Argyropelecus affinis and Parvilux ingens, which were collected in the Santa Barbara and San Clemente Basins between 1977 and 1979. In addition, feces obtained from 6 laboratory-maintained specimens of the midwater zoarcid Melanostigma pammelas were used for repeated sinking-rate measurements. The mean of the measured sinking rates for all species was 1.19 cm s-1 (1 028 m d-1), which is much higher than the known descent rates of euphausiid and copepod fecal pellets and of most other particulate organic detritus. Dissolution characteristics were also investigated for fecal matter from 4 species collected by the same series of net hauls: S. leucopsarus, T. mexicanus, A. affinis, and Sternoptyx obscura. The release of dissolved organic compounds from this material is low and does not represent a significant output during the relatively short time required to sink through the water column. These findings suggest that midwater fish fecal matter may represent a major source of organic transfer between the pelagic community and the benthos.  相似文献   

7.
A bottom-mounted upward-facing 38-kHz echo sounder was deployed at ~400 m and cabled to shore in Masfjorden (~60°52′N, ~5°24′E), Norway. The scattering layers seen during autumn (September–October) 2008 were identified by trawling. Glacier lanternfish (Benthosema glaciale) were mainly distributed below ~200 m and displayed three different diel behavioral strategies: normal diel vertical migration (NDVM), inverse DVM (IDVM) and no DVM (NoDVM). The IDVM group was the focus of this study. It consisted of 2-year and older individuals migrating to ~200–270 m during the daytime, while descending back to deeper than ~270 m during the night. Stomach content analysis revealed increased feeding during the daytime on overwintering Calanus sp. We conclude that visually searching glacier lanternfish performing IDVM benefit from the faint daytime light in mid-waters when preying on overwintering Calanus sp.  相似文献   

8.
In this study, juvenile colonies of massive Porites spp. (a combination of P. lutea and P. lobata) from the lagoon of Moorea (W 149°50′, S 17°30′) were damaged and exposed to contrasting conditions of temperature and flow to evaluate how damage and abiotic conditions interact to affect growth, physiological performance, and recovery. The experiment was conducted in April and May 2008 and consisted of two treatments in which corals were either undamaged (controls) or damaged through gouging of tissue and skeleton in a discrete spot mimicking the effects of corallivorous fishes that utilize an excavating feeding mode. The two groups of corals were incubated for 10 days in microcosms that crossed levels of temperature (26.7 and 29.6°C) and flow (6 and 21 cm s−1), and the response assessed as overall colony growth (change in weight), dark-adapted quantum yield of PSII (F v/F m), and healing of the gouged areas. The influence of damage on growth was affected by temperature, but not by flow. When averaged across flow treatments, damage promoted growth by 25% at 26.7°C, but caused a 25% inhibition at 29.6°C. The damage also affected F v/F m in a pattern that differed between flow speeds, with a 10% reduction at 6 cm s−1, but a 4% increase at 21 cm s−1. Regardless of damage, F v/F m at 21 cm s−1 was 11% lower at 26.7°C than at 29.6°C, but was unaffected by temperature at 6 cm s−1. The lesions declined in area at similar rates (4–5% day−1) under all conditions, although the tissue within them regained a normal appearance most rapidly at 26.7°C and 6 cm s−1. These findings show that the response of poritid corals to sub-lethal damage is dependent partly on abiotic conditions, and they are consistent with the hypothesis that following damage, calcification and photosynthesis can compete for metabolites necessary for repair, with the outcome affected by flow-mediated mass transfer. These results may shed light upon the ways in which poritid corals respond to biting by certain corallivorous fishes.  相似文献   

9.
The chaotic physical and chemical environment at deep-sea hydrothermal vents has been associated with an ecosystem with few predators, arguably allowing the habitat to provide refuge for vulnerable species. The dominance of endemic limpets with thin, open-coiled shells at north Pacific vents may support this view. To test their vulnerability to predation, the incidence of healed repair scars, which are argued to reflect non-lethal encounters with predators, were examined on the shells of over 5,800 vent limpets of Lepetodrilus fucensis McLean (1988) that were collected from 13 to 18 August 1996. Three vent fields on the Juan de Fuca Ridge at ca. 2,200 m depth were sampled, two within 70 m of 47°56.87′N 129°05.91′W, and one at 47°57.85′N 129°05.15′W with the conspicuous potential limpet predators, the zoarcid fish Pachycara gymninium Anderson and Peden (1988), the galatheid crab Munidopsis alvisca Williams (1988), and the buccinid snail Buccinum thermophilum Harasewych and Kantor (2002). Limpets from the predator-rich vent were most often scarred, a significant difference created by the high incidence of scars on small (<4 mm long) limpets in this sample. Collected with the limpets were small (median shell diameter 4.4 mm) buccinids. They, rather than the larger, more conspicuous mobile fishes and crabs are argued to be the shell-damaging predator. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Spatial distribution and temporal variation of epibenthic assemblages of coralligenous biogenic rocky outcrops occurring in the northern Adriatic Sea (45°04′–45°24′N; 12°23′–12°43′E) were investigated by photographic sampling from 2003 to 2006 at 12 randomly selected sites. The dominant reef-forming organisms were the encrusting calcareous algae (Lithophyllum stictaeforme, Lithothamnion minervae and Peyssonnelia polymorpha), while the main bioeroders were boring sponges (Cliona viridis, C. celata, C. thoosina, C. rhodensis, Piona vastifica) and the bivalve Gastrochaena dubia. Composition of the assemblages varied thorough years and among sites. Spatial heterogeneity, at local and regional scale, prevailed over temporal variation. This variability was related both to the geo-morphological features of the outcrops and to environmental variables. Sites clearly differed in the percent cover of reef builder and bioeroder species while only limited temporal variation within site was found. Some taxa revealed complex intra-site temporal trends. These results provide valuable information on the diversity and variability of epibenthic assemblages of the northern Adriatic coralligenous reefs, essential for the management and conservation of these unique biogenic habitats.  相似文献   

11.
Aerial sighting surveys were conducted in 2000 to evaluate the distribution and abundance of finless porpoise Neophocaena phocaenoides in the Inland Sea of Japan. We flew 60 north–south transects (2,218 km in total) at intervals of 6.43 km over the study area between 131°3′ and 134°59′ E. In total, 148 groups were detected by two observers. The average group size was 1.56 individuals. The effective strip half-width of each observer was estimated to be 107 m (coefficient of variation [CV] = 8.26%). Porpoise abundance was estimated at 7,572 individuals and the density was as low as 0.506 individuals/km2 (CV = 17.3%). The sea is among the Japanese waters with the lowest density in spite of its favorable topographical conditions. In the western stratum of the study area, where the estimated density was 1.31 individuals/km2, we observed a relatively regular distribution. In the central-eastern stratum, which had an estimated density of 0.208 individuals/km2, we confirmed a clumped distribution that was restricted to inshore waters or near islands. No individuals were observed in waters between 132°51′ and 133°11′E, and between 133°43′ and 133°59′E, where sand dredging and other human activities have been active, suggesting that habitat fragmentation has occurred.  相似文献   

12.
The specific composition and abundance of bathyal decapods in the Catalan Sea were investigated. A total of 109 bottom trawls were effected at depths ranging from 141 to 730 m on the continental slope in the Catalan Sea (northwestern Mediterranean) during two sampling cruises in spring and autumn 1991. Multivariate analysis of the samples revealed four groups of the decapod crustacean communities: (1) A shelf-slope transition-zone group at depths between 146 and 296 m, primarily characterized by the presence of Plesionika heterocarpus; (2) an upper-slope community between 245 and 485 m, characterized by the presence of the mesopelagic species Pasiphaea sivado and Sergestes arcticus, with Processa nouveli, Solenocera membranacea and Nephrops norvegicus as secondary species; (3) a middle-slope community below 514 m, with Aristeus antennatus and Calocaris macandreae as the most abundant species; (4) a group at 430 to 515 m, comprising all samples collected exclusively within or in the vicinity of submarine canyons. Mesopelagic decapods were predominant on the slope, while benthopelagic fishes (Merluccius merluccius, Micromesistius poutassou, Gadiculus argenteus) replaced mesopelagic decapods on the shelf. There were seasonal variations, with higher densities of mesopelagic species in spring, which were probably related, among other factors, to variations in the photoperiod. Our surveys also revealed higher species richness in the canyons together with seasonal changes in the megafaunal biomass. Generally, the upper and middle-slope communities both displayed seasonal changes in the composition and abundance of megabenthos.  相似文献   

13.
 A reproductive strategy consisting of deep- water spawning and egg-care was inferred for the midwater squid Gonatus onyx Young, 1972. Brooding females and associated eggs and hatchlings, captured between 1250 and 1750 m depth off southern California, are described. Brooding females appear to be senescent and lack tentacles. Large eggs of this species (3 mm) at cold temperatures (3 °C at capture depth) may require as long as 9 mo to develop. The high lipid content of the digestive gland in adult females of this species may provide fuel to support such an extended “brooding” period. Received: 22 February 1999 / Accepted: 25 May 2000  相似文献   

14.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

15.
Diets of 15 species of demersal and pelagic fishes on the upper continental slope (420 to 550 m) were determined, based on samples taken every two months over 13 mo (April 1984 to April 1985) off eastern Tasmania. The calorific contribution of each prey item to the diets was determined. The fish could be divided into four trophic categories: pelagic piscivores, epibenthic piscivores, epibenthic invertebrate feeders and benthopelagic omnivores. Dietary overlap between the groups was low. The pelagic piscivores Apogonops anomalus, Trachurus declivis, Brama brama, Lepidopus caudatus and Macruronus novaezelandiae primarily consume the shelf-break myctophid Lampanyctodes hectoris; their diet is narrow, with a large overlap between species. The epibenthic piscivores Deania calcea and Genypterus blacodes both take a greater variety of prey, but have little dietary overlap. The fish feeding on epibenthic invertebrates, Coelorinchus sp. 2 and Centriscops humerosus, obtain most of their energy from benthic Crustacea and Ophiuroidea, supplemented with Lampanyctodes hectoris; the diet is broad, with little overlap. Among the benthopelagic omnivores (Cyttus traversi, Coelorinchus sp. 4, Lepidorhynchus denticulatus, Neocyttus rhomboidalis, Helicolenus percoides, Epigonus denticulatus and E. lenimen), most diets are broad and show slight overlap. All but E. denticulatus consume significant quantities of Lampanyctodes hectoris as well as Crustacea, particularly Polychaeta, Euphausiacea and Pyrosoma atlanticum. Seasonal changes in diet occurred in G. blacodes, T. declivis, Lepidopus caudatus, Coelorinchus sp. 4, Lepidorhynchus denticulatus, H. percoides, E. denticulatus and E. lenimen; these were related to changes in abundance of particular prey species, not to alterations in feeding habits. Only three species, Lepidopus caudatus, Coelorinchus sp. 2 and H. percoides, showed significant diel feeding periodicity. Ontogenetic dietary changes were evident in Cyttus traversi, Coelorinchus sp. 2, Lepidorhynchus denticulatus and H. percoides. Cyttus traversi and H. percoides progressively changed from crustaceans to fish as their size increased. The diets of size classes within species showed little overlap, except for Lepidorhynchus denticulatus, which eats chiefly euphausiids and Lampanyctodes hectoris at all sizes. In addition to describing the diets and trophic relationships of 90% of the fish biomass, the results emphasize the importance to the entire fish community of mesopelagic food resources, particularly Lampanyctodes hectoris. Many benthopelagic species undertake extensive vertical migrations in search of prey, thus playing a major role in the transport of energy from midwater regions to the benthos of the continental slope.  相似文献   

16.
We examine the feeding ecology of characteristic micronekton species inhabiting the mid-slope region (~700 to 1,500 m depths) off southern Tasmania. Five fishes, Diaphus danae, Hygophum hanseni, Lampanyctus australis (Myctophidae), Phosichthys argenteus (Phosichthyidae) and Chauliodus sloani (Chauliodontidae), were sampled by depth-stratified midwater trawling on a diel and seasonal basis. Overall, 74 prey taxa were identified from 2,132 stomachs. Euphausiids (mostly Euphausia spinifera and E. similis) and calanoid copepods (mostly Pleuromamma species) were the main prey of the three myctophids; P. argenteus ate fishes and decapods in addition to the euphausiids, while C. sloani ate only fishes. Copepods were less important in the diets of larger D. danae, L. australis and P. argenteus and were replaced by euphausiids in the myctophids and by fishes in P. argenteus. In autumn, when euphausiid biomass increased six-fold, all three myctophids and P. argenteus fed most intensively and consumed a high proportion of euphausiids. The three myctophids appeared to feed nocturnally. Differences in the timing and duration of feeding corresponded to differences in their spatio-temporal overlap with key prey. Daily rations of H. hanseni (1.93% dry-weight biomass) and L. australis (1.43%), estimated from data on stomach fullness, were typical for temperate myctophids and higher than that of the non-migratory P. argenteus (0.43%). The vertical flux of near-surface plankton production to the mesopelagic food web is based primarily on diel feeding in the upper water column (<500 m) rather than consumption of species that migrate seasonally into the deeper mesopelagic zone. Because species such as P. argenteus and C. sloani feed above the third trophic level, their predators, including the commercially important orange roughy, are feeding between levels four and five.  相似文献   

17.
18.
Movement rate, oxygen consumption, and respiratory tree ammonium concentration were measured in situ in the holothurians Pearsonothuria graeffei and Holothuria edulis in the Agan-an Marine Reserve, Sibulan, Philippines (9°20′30″N, 123°18′31″E). Measurements were made both day and night for both species during April–July 2005. P. graeffei had significantly higher movement rate during the day than at night (1.14 and 0.27 m h−1, respectively; three-way ANOVA, P < 0.05) while H. edulis had higher movement rate at night compared to the day (0.83 and 0.07 m h−1, respectively), spending the daylight hours sheltering under coral. More than 80% of H. edulis had movement rate of zero during the day. Oxygen consumption of P. graeffei was significantly higher during the day than at night (1.61 and 0.83 μmol O2 g−1 h−1, respectively; two-way ANCOVA, P < 0.05), but the reduction at night was not as pronounced as the reduction in movement. H. edulis had a 75% reduction in oxygen consumption during the day compared to night (0.51 and 1.96 μmol O2 g−1 h−1, respectively), matching this species’ reduced movement rates during the day. Ammonium concentration in water withdrawn from the respiratory trees of P. graeffei during the day (12.0 μM) was three times higher than in respiratory tree water sampled at night (4.3 μM) and 15 times higher than ambient seawater (0.8 μM; three-way ANOVA, P < 0.05). Ammonium concentration in the respiratory tree water of H. edulis was six times higher at night (14.6 μM) than during the day (2.2 μM) and 16 times higher than that of ambient seawater (0.9 μM). Even though H. edulis and P. graeffei are found within the same coral reef environment, they may affect different substrates and reef organisms due to their different habitats and distinct but opposite diel cycles.  相似文献   

19.
The diversity of ecological communities has been the focus of many studies. Because biodiversity provides several indicators used in an Ecosystem Approach to Fisheries (EAF) to track changes in fish communities, we investigated the spatial and temporal patterns in the diversity of some demersal fish communities subjected to varying fishing pressure. Depth and catch rate were the most important predictors in explaining changes in diversity followed by longitude and survey year. Diversity, as measured by the various indices except for taxonomic distinctness (∆*), initially declined with increasing depth to about a depth of 80 m, then increased to about 150 m after which it declined. Taxonomic distinctness index (∆*) showed an increase in the taxonomic heterogeneity of the demersal community below the 300-m isobath. Diversity remained relatively constant with increase in longitude to around 24°E (which has the lowest diversity) after which it increased. The assessment of the temporal trend in diversity indicates that survey year has a significant effect on all diversity indices except for ∆*. Diversity increased and dominance declined with time. This may be result of a decline in the abundance of dominant species or an increase in the abundance less dominant species, or a combination of both effects. Multivariate analysis of the set of diversity indices showed three groups of indices: those reflecting species richness (S, Margalef’s d), those measuring mainly taxonomic relatedness (∆*), and those balancing the richness and evenness components of diversity (J′, H′, λ, ∆, Hill’s N1, and Hill’s N2). The relationship between evenness, catch rate, and size was also investigated. Size classes with highest evenness were found to have lowest catch rate and vice versa. This highlights the need to consider the size and trophic level of species when linking diversity to the functioning of ecosystems.  相似文献   

20.
Within Monterey Bay, California, USA, the food web transfer of domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia, has led to major mortality events of marine mammals and birds. Less visible, and less well known, is whether invertebrates and fish associated with the benthos are also affected by blooms of DA-producing Pseudo-nitzschia spp. This study examines the presence of DA in benthic flatfish offshore of Davenport, California, (37°0′36″N, 122°13′12″W) and within Monterey Bay, California (36°45′0″N, 122°1′48″W), including species that feed primarily in the sediment (benthic-feeding) and species that feed primarily in the water column (benthopelagic-feeding). Flatfish caught between 10 December 2002 and 17 November 2003 at depths of 30–180 m had concentrations of DA in the viscera ranging from 3 to 26 μg DA g−1 of viscera. Although the DA values reported are relatively low, benthic-feeding flatfish were frequently contaminated with DA, especially as compared with the frequency of contamination of flatfish species that feed in the water column. Furthermore, on days in which both benthic-feeding and benthopelagic-feeding flatfish were collected, the former had significantly higher concentrations of DA in the viscera. Curlfin turbot, Pleuronicthys decurrens, the flatfish with both the highest level and frequency of DA contamination, are reported to feed exclusively on polychaetes, suggesting that these invertebrates may be an important vector of the toxin in benthic communities and may pose a risk to other benthic-feeding organisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号