首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Effects of agricultural land-use and land-use change on soil organic carbon (SOC) pools play an important role in the mitigation of the global greenhouse effect. To estimate these effects, baseline SOC data for individual regions or countries are needed. The aim of this study was to quantify current SOC stocks in Swiss agricultural soils, to identify meaningful predictors for SOC, and to estimate historical SOC losses. SOC stocks in mineral soils were estimated from combined georeferenced data for land-use, topography, and profile data (n=544) from soil surveys. Mean SOC density in the layer 0–20 cm ranged between 40.6±8.9 t ha−1 (±95% confidence interval (CI)) for arable land and 50.7±12.2 t ha−1 for favourable permanent grassland, and in the layer 0–100 cm from 62.9±15.2 t ha−1 for unfavourable grassland to 117.4±29.8 t ha−1 for temporary grasslands (leys). SOC stocks in organic soils were quantified separately for intact and cultivated peatlands using data from peatland inventories and current SOC densities calculated from average peat decay rates. Organic soils account for less than 3% of the total area but store about 28% (47.2±7.3 Mt) of the total SOC stock of 170±17 Mt. Land-use type, clay content, and altitude (serving as a climate proxy for grassland soils at higher altitudes) were identified as main SOC predictors in mineral soils. Clay content explained up to 44% of the variability in SOC concentrations in the fine earth of arable soils, but was not significantly related to SOC in grassland soils at higher altitudes. SOC concentration under permanent grassland increases linearly with altitude, but because soil depth and stone content limit carbon storage in alpine grassland soils, no relationship was found between altitude and SOC stock. A preliminary estimate suggested that about 16% of the national SOC stock has been lost historically due to peatland cultivation, urbanisation, and deforestation. It seems unlikely that future changes in agricultural practices could compensate for this historical SOC loss in Swiss agricultural soils.  相似文献   

2.
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha?1 yr?1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.  相似文献   

3.
Carbon footprint (CFP) of sugar produced from sugarcane in eastern Thailand was estimated from greenhouse gas emissions (CO2, CH4, and N2O) during the sugarcane cultivation and milling process. The use of fossil fuels, chemical and organic fertilizer and sugarcane biomass data during cultivation were collected from field surveys, questionnaires and interviews. Sugar mill emissions, fossil fuel utilization and greenhouse gas emission from wastewater treatments were included. The results show that sugar production has a carbon footprint of 0.55 kg CO2e kg?1 sugar. This carbon footprint was a sum of 0.49 kg CO2e kg?1 sugar from sugarcane cultivation and 0.06 kg CO2e kg?1 sugar from the milling process. For the cultivation part, most of the GHGs emissions were from fertilizer, fossil fuel use and biomass burning. The CFP in eastern Thailand is sensitive to the type of data selected for calculation and of variations of farm inputs during sugarcane cultivation. There was no significant difference of CFP among farm sizes, although small farms tended to give a relatively higher CFP than that of medium and large farms.  相似文献   

4.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

5.
An extensive knowledge of the temporal variability of soil fertility parameters and how this variation affects the environment is imperative to a wide range of disciplines within agricultural science for optimal crop production and ecosystem preservation. This paper examines the temporal variability of soil pH, organic matter (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), available phosphorus (PAv), and available potassium (KAv) on Cambosols (Entisols) (n = 179) and Anthrosols (Inceptisols) (n = 95) in Zhangjiagang County, China from 1980 to 2004. Nutrient input was monitored from 1983 to 2004. Annual N fertilizer rates were significantly different during three periods (1983–1989, 1989–1999, 1999–2004), where annual rates increased significantly after 1989 and then decreased after 1999. Annual P fertilizer rates were significantly different during two periods (1983–1993, 1993–2004) where annual rates increased after 1993. No change was found in K fertilizer rates. Soil pH marginally increased by 0.14 units in Cambosols, but significantly decreased by 1.02 units in Anthrosols. OM, CEC, and TN increased in both soil orders an average of 2.15 g kg?1, 1.6 cmol kg?1, and 0.21 g kg?1, respectively. TP decreased in Anthrosols by 70 mg kg?1, PAv increased in Cambosols by 4.83 mg kg?1, and KAv decreased in Cambosols by 15 mg kg?1. Fertilizer input rates are causing nutrient imbalances, contributing to acidification in Anthrosols, and decreasing C/N ratios. Nutrient loading of N and deficiency of K is also a potential problem in the area. Efforts should be made to readjust soil nutrient inputs to reach an optimal, sustainable level.  相似文献   

6.
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha?1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P  0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha?1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.  相似文献   

7.
‘Formiguers’ are structures similar to charcoal-kilns that were used to burn piles of biomass with a soil cover in order to produce fertilizers for agricultural plots. Their use was widespread in Spain up to the 1960s and similar structures are still in use in India and Bhutan. Our objective was to study the effects of the ‘formiguer’ on its soil cover in terms of changes in nutrient availability. We built an experimental 0.5-m3 ‘formiguer’ with 68 kg of plant material with a 12% moisture content and 550 kg of soil with a 16% moisture content. The content of organic carbon and mineral nitrogen decreased in the soil cover as a result of burning. After aerobic incubation all samples had a similar content of mineral nitrogen. Exchangeable potassium and total and labile phosphorus increased after burning as a result of the soil cover mixing with the ashes of the biomass as the ‘formiguer’ collapsed during burning in the first two cases, while mineralization of organic compounds produced the increase in labile phosphorus. This input of nutrients for the agricultural plots occurs at a net loss of 0.4–2.5 Mg organic C ha?1. Very small amounts of charcoal were produced and this may be the reason for their low occurrence in soils today. Burning of ‘formiguers’ required the harvest of vegetation from a considerable forest area (10–25 ha per hectare of agricultural land) and represented a significant disturbance of these systems.  相似文献   

8.
Estimates of regional greenhouse gas emissions from agricultural systems are needed to evaluate possible mitigation strategies with respect to environmental effectiveness and economic feasibility. Therefore, in this study, we used the GIS-coupled economic-ecosystem model EFEM–DNDC to assess disaggregated regional greenhouse gas (GHG) emissions from typical livestock and crop production systems in the federal state of Baden-Württemberg, Southwest Germany. EFEM is an economic farm production model based on linear programming of typical agricultural production systems and simulates all relevant farm management processes and GHG emissions. DNDC is a process-oriented ecosystem model that describes the complete biogeochemical C and N cycle of agricultural soils, including all trace gases.Direct soil emissions were mainly related to N2O, whereas CH4 uptake had marginal influence (net soil C uptake or release was not considered). The simulated N2O emissions appeared to be highly correlated to N fertilizer application (R2 = 0.79). The emission factor for Baden-Württemberg was 0.97% of the applied N after excluding background emissions.Analysis of the production systems showed that total GHG emissions from crop based production systems were considerably lower (2.6–3.4 Mg CO2 eq ha−1) than from livestock based systems (5.2–5.3 Mg CO2 eq ha−1). Average production system GHG emissions for Baden-Württemberg were 4.5 Mg CO2 eq ha−1. Of the total 38% were derived from N2O (direct and indirect soil emissions, and manure storage), 40% were from CH4 (enteric fermentation and manure storage), and 22% were from CO2 (mainly fertilizer production, gasoline, heating, and additional feed). The stocking rate was highly correlated (R2 = 0.85) to the total production system GHG emissions and appears to be a useful indicator of regional emission levels.  相似文献   

9.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

10.
Reducing phosphorus (P) in dairy diets may result in different types of manure with different chemical composition. Application of these manures to soils may affect the soil P solubility and lead to different environmental consequences. A laboratory incubation study determined the impact of 40 dairy manures on P dynamics in two soil types, Mattapex silt loam (Aquic Hapludult) and Kalmia sandy loam (Typic Hapludult). The manures were fecal samples of lactating cows, collected from commercial dairy farms located in Northeastern and Mid-Atlantic United States, with a wide range of dietary P concentrations (from 2.9 to 5.8 g P kg−1 feed dry matter, DM). Dried and ground fecal samples were mixed with surface horizon (0–15 cm) of soils at 150 kg P ha−1 and the mixtures were incubated at 25 °C for 21 days. At the end of incubation, water soluble P (WS-P) and Mehlich-3 P (M3-P) in the soil–manure mixtures were substantially higher than the control (soil alone) but were lower than the soils receiving fertilizer KH2PO4 at 150 kg P ha−1. Similarly, the relative extractability of P in soils amended with low- and high-P manures was always lower (<93%) than KH2PO4 suggesting that fertilizer P is more effective at increasing soil solution P in the short-term. Concentrations of WS-P or M3-P in soil–manure mixtures did not differ regardless of the source of manure (i.e. different farms and different diets). This suggests that when the same amount of P is added to soils through manure applications, the solubility or bioavailability of P in soils will be the same. However, P concentrations in feces correlate significantly with that in diets (r = 0.82**); and when the manures were grouped into high-P diets (averaging 5.1 g P kg−1) versus low-P diets (3.6 g P kg−1), manure P was 40% greater in the high-P group (10.6 g kg−1 DM) than the low-P group (7.6 g kg−1 DM). Thus, lowering excess P in diets would reduce P excretion in manures, P accumulation in soils, improve P balance on farms, require less area for land disposal, and decrease potential for P loss to waters.  相似文献   

11.
This paper provides an overview of the impacts of rural land use on lowland streamwater phosphorus (P) and nitrogen (N) concentrations and P loads and sources in lowland streams. Based on weekly water quality monitoring, the impacts of agriculture on streamwater P and N hydrochemistry were examined along a gradient of rural–agricultural land use, by monitoring three sets of ‘paired’ (near-adjacent) rural headwater streams, draining catchments which are representative of the major geology, soil types and rural/agricultural land use types of large areas of lowland Britain. The magnitude and timing of P and N inputs were assessed and the load apportionment model (LAM) was applied to quantify ‘continuous’ (point) source and ‘flow-dependent’ (diffuse) source contributions of P to these headwater streams. The results show that intensive arable farming had only a comparatively small impact on streamwater total phosphorus (TP loads), with highly consistent stream diffuse-source TP yields of ca. 0.5 kg-P ha?1 year?1 for the predominantly arable catchments with both clay and loam soils, compared with 0.4 kg-P ha?1 year?1 for low agricultural intensity grassland/woodland on similar soil types. In contrast, intensive livestock farming on heavy clay soils resulted in dramatically higher stream diffuse-source TP yields of 2 kg-P ha?1 year?1. The streamwater hydrochemistry of the livestock-dominated catchment was characterised by high concentrations of organic P, C and N fractions, associated with manure and slurry sources. Across the study sites, the impacts of human settlement were clearly identifiable with effluent inputs from septic tanks and sewage treatment works resulting in large-scale increases in soluble reactive phosphorus (SRP) loads and concentrations. At sites heavily impacted by rural settlements, SRP concentrations under baseflow conditions reached several hundred μg-P L?1. Load apportionment modelling demonstrated significant ‘point-source’ P inputs to the streams even where there were no sewage treatment works within the upstream catchment. This indicates that, even in sparsely populated rural headwater catchments, small settlements and even isolated groups of houses are sufficient to cause significant nutrient pollution and that septic tank systems serving these rural communities are actually operating as multiple point sources, rather than a diffuse input.  相似文献   

12.
Heterogeneous photocatalytic oxidation is a water reclamation technology which avoids chemical consumption and can be powered by solar radiation. Because this generally sustainable process is of limited efficiency for the treatment of biologically pretreated greywater, it was combined with activated carbon adsorption. The effluent of a constructed wetland for treatment of separately collected greywater was subjected to photocatalytic oxidation using the photocatalyst titanium dioxide (TiO2) “P25” in both the absence and the presence of powdered activated carbon (PAC). Photocatalytic oxidation alone with UV fluences of about 10 Wh L?1 was not capable of reducing total organic carbon (TOC) from an initial concentration of 5.5 mg L?1 safely below 2 mg L?1 as a prerequisite for high-quality water reuse purposes. However, when PAC was added, TOC concentrations subsequent to photocatalytic oxidation were less than 2 mg L?1 even after reusing the TiO2/PAC mixture 10 times. PAC addition is estimated to reduce the insolation area necessary to achieve this target by solar photocatalytic oxidation of biologically treated greywater by a factor 7. This combination process represents an innovative chemical-free technology within wastewater reuse schemes.  相似文献   

13.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

14.
Soils developed on the sites of Australian Aboriginal oven mounds along the Murray River in SE Australia, classified as Cumulic Anthroposols under the Australian Soil Classification, are shown to have traits similar to the Terra Preta de Indio of the Amazon basin. Seven such sites were characterised and compared with adjacent soils. The Cumulic Anthroposols contained significantly (p < 0.05) more soil carbon (C), compared to adjacent non-Anthroposols. Solid-state 13C NMR spectroscopy showed that the C in the Cumulic Anthroposols was predominantly aromatic, especially at depth, confirming the presence of charcoal. Radiocarbon analysis carried out on charcoal collected from two of these sites showed that it was deposited 650 ± 30 years BP at one site and 1609 ± 34 years BP at the other site, demonstrating its recalcitrance in soil. The charcoal originated from plant material, as shown by SEM, and had high levels of Ca agglomeration on its surfaces. The Cumulic Anthroposols were shown to have altered nutrient status, with total N, P, K and Ca being significantly greater than in the adjacent soils throughout the profile. This was also reflected in the higher mean CEC of 31.2 cmol (+) kg?1 and higher pH by 1.3 units, compared to the adjacent soils. Based on the similarity of these Cumulic Anthroposols with the Terra Preta de Indio of the Amazon, we suggest that these Cumulic Anthroposols can be classified as Terra Preta Australis. The existence of these soils demonstrates that Australian soils, in temperate climates, are capable of storing C in much higher quantities than has been previously recognised, and that this capability is founded on the unique stability and properties of charred organic matter. Furthermore, the addition of charcoal appears to have improved the physical and chemical properties of these soils. Together, this provides important support for the concept of soil amendment with “biochar”, the charred residue produced by pyrolysis of biomass, as a means for sequestering C and enhancing agricultural productivity.  相似文献   

15.
Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9 t ha?1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.  相似文献   

16.
Agriculture is an important contributor to global emissions of greenhouse gases (GHG), in particular for methane (CH4) and nitrous oxide (N2O). Emissions from farms with a stock of ruminant animals are particularly high due to CH4 emissions from enteric fermentation and manure handling, and due to the intensive nitrogen (N) cycle on such farms leading to direct and indirect N2O emissions. The whole-farm model, FarmGHG, was designed to quantify the flows of carbon (C) and nitrogen (N) on dairy farms. The aim of the model was to allow quantification of effects of management practices and mitigation options on GHG emissions. The model provides assessments of emissions from both the production unit and the pre-chains. However, the model does not quantify changes in soil C storage.Model dairy farms were defined within five European agro-ecological zones for both organic and conventional systems. The model farms were all defined to have the same utilised agricultural area (50 ha). Cows on conventional and organic model farms were defined to achieve the same milk yield, so the basic difference between conventional and organic farms was expressed in the livestock density. The organic farms were defined to be 100% self-sufficient with respect to feed. The conventional farms, on the other hand, import concentrates as supplementary feed and their livestock density was defined to be 75% higher than the organic farm density. Regional differences between farms were expressed in the milk yield, the crop rotations, and the cow housing system and manure management method most common to each region.The model results showed that the emissions at farm level could be related to either the farm N surplus or the farm N efficiency. The farm N surplus appeared to be a good proxy for GHG emissions per unit of land area. The GHG emissions increased from 3.0 Mg CO2-eq ha−1 year−1 at a N surplus of 56 kg N ha−1 year−1 to 15.9 Mg CO2-eq ha−1 year−1 at a N surplus of 319 kg N ha−1 year−1. The farm N surplus can relatively easily be determined on practical farms from the farm records of imports and exports and the composition of the crop rotation. The GHG emissions per product unit (milk or metabolic energy) were quite closely related to the farm N efficiency, and a doubling of the N efficiency from 12.5 to 25% reduced the emissions per product unit by ca. 50%. The farm N efficiency may therefore be used as a proxy for comparing the efficiencies of farms with respect to supplying products with a low GHG emission.  相似文献   

17.
The purpose of this study was to develop a pilot scale tubular photo bioreactor (80 L) for photo fermentative hydrogen production by photosynthetic purple-non-sulfur bacterium, Rhodobacter capsulatus, operating in outdoor conditions, using acetate as the carbon source. The reactor was operated continuously in fed-batch mode for 30 days throughout December 2008 in Ankara. It was placed in a greenhouse in order to keep the temperature above freezing levels. It was found that R. capsulatus had a rapid growth with a specific growth rate of 0.025 h?1 in the exponential phase. The growth was defined with modified logistic model for long term duration. The hydrogen production and feeding started in the late exponential phase. Evolved gas contained 99% hydrogen and 1% carbon dioxide by volume. The average molar productivity calculated during daylight hour was 0.31 mol H2/(m3 h) with regard to the total reactor volume and 0.112 mol H2/(m2·day) with regard to the total illuminated surface area. It was proven that even at low light intensities and low temperatures, the acetic acid which was fed to the system can be utilized for biosynthesis, growth and hydrogen production. The overall hydrogen yield was 0.6 mole H2 per mole of acetic acid fed. This study showed that photofermentation in a pilot scale tubular photo bioreactor can produce hydrogen, even in winter conditions.  相似文献   

18.
Close relationships among climatic factors and soil respiration (Rs) are commonly reported. However, variation in Rs across the landscape is compounded by site-specific differences that impede the development of spatially explicit models. Among factors that influence Rs, the effect of ecosystem age is poorly documented. We hypothesized that Rs increases with grassland age and tested this hypothesis in a chronosequence of tallgrass prairie reconstructions in central Iowa, U.S.A. We also assessed changes in root biomass, root ingrowth, aboveground net primary productivity (ANPP), and the strength of soil temperature and moisture in predicting Rs. We found a significant increase in total growing season Rs with prairie age (R2 = 0.79), ranging from 714 g C m?2 in the youngest reconstruction (age 4) to 939 g C m?2 in the oldest prairie (age 12). Soil temperature was a strong predictor of intra-seasonal Rs among prairies (R2 = 0.78–0.87) but mean growing season soil temperature and moisture did not relate to total Rs. The increase in Rs with age was positively correlated with root biomass (r = 0.80) and ANPP (r = 0.87) but not with root ingrowth. Our findings suggest that growing season Rs increases with tallgrass prairie age, root biomass, and ANPP during young grassland development.  相似文献   

19.
RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976–2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang’a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha−1), farmyard manure (FYM—5 and 10 t ha−1) and plant residue treatments, in a variety of combinations. The Machang’a experiment involved a fertiliser (51 kg N ha−1) and a FYM (0, 5 and 10 t ha−1) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang’a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang’a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops.  相似文献   

20.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号