首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 10 毫秒
1.
2.
Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90 percent or more (95 percent or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur.  相似文献   

3.
Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technologies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstration. The goal is to ensure that a steady stream of permanent, cost-effective, technologies will be ready for demonstration in the field, thereby increasing the number of viable alternatives available for use in Superfund removal and remedial actions. Under this program, EPA can offer technology developers financial assistance of up to $150,000 per year, for up to two years. The program is in its second year with seven projects underway and eight more ready to start, pending completion of award actions. The Third Emerging Technology Program Solicitation is open to the receipt of new proposals from July 8,1989 through September 7,1989. The purpose of this article is to provide the reader with: (1) an introduction to the Emerging Technology Program; (2) an understanding of how the Program operates; (3) a summary of those technologies currently being tested and evaluated under the Program; and (4) information on how to apply to the Program.  相似文献   

4.
Investigations of polluted brownfield sites and sample analyses are expensive, and the resulting data are often of poor quality. Efforts are needed, therefore, to improve the methods used in investigations of brownfield sites to both reduce costs and improve the quality of the results. One approach that could be useful for both of these purposes is the triad strategy, developed by the US Environmental Protection Agency, in which managing uncertainty is a central feature. In the investigations reported here, a field study was conducted to identify possible ways in which uncertainties could be managed in practice. One example considered involves optimizing the uncertainty by adjusting the sizes of samples and the efforts expended in analytical work according to the specific aims of the project. In addition, the potential utility of several toxicity assessment methods for screening sites was evaluated. As well as presenting the results of these assessments, in this contribution we discuss ways in which a flexible work strategy and screening methods inspired of the triad philosophy could be incorporated into the Swedish approach to remediate brownfield sites. A tiered approach taking advantage of field and screening methods is proposed to assess brownfield sites focusing on the response and acceptable uncertainty that are required for the task.  相似文献   

5.
The widely used source apportionment model, positive matrix factorization (PMF2), has been applied to various air pollution data. Recently, U.S. Environmental Protection Agency (EPA) developed EPA positive matrix factorization (PMF), a version of PMF that will be freely distributed by EPA. The objectives of this study were to conduct source apportionment studies for particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)) speciation data using PMF2 and EPA PMF (version 1.1) and to compare identified sources between the two models. In the present study, ambient PM(2.5) compositional datasets of 24-hr integrated samples collected at EPA Speciation Trends Network monitoring sites in Chicago, IL, and Portland, OR, were analyzed. Both PMF2 and EPA PMF extracted eight sources for the Chicago data and 10 sources for the Portland data. The model-resolved source profiles were similar between two models for both datasets. However, in several sources, the average contributions did not agree well and the time series contributions were not highly correlated. The differences between PMF2 and EPA PMF solutions were caused by the different least-square algorithm and the different nonnegativity constraints. Most of the average source contributions resolved by both models were within 5-95% uncertainty provided by EPA PMF, indicating that the sources resolved by both models were reproducible.  相似文献   

6.
Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located approximately 18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   

7.
ABSTRACT

From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the “clean” Wedding sampler consistently measured the same concentration as the “dirty” Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 um under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

8.
From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the "clean" Wedding sampler consistently measured the same concentration as the "dirty" Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 microns under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

9.
Abstract

Inhalation exposure to urban air particles is known to increase morbidity in humans and animals. Our group utilizes the Harvard/U.S. Environmental Protection Agency Ambient Particle Concentrator (HAPC) to generate concentrated aerosols of outdoor air particles for experimental exposures. We have reported increased pathologic responses to inhalation of concentrated urban air particles and identified silicon (as silicate) as an element associated with many of these responses. Using silicate-rich Mt. St. Helen’s volcanic ash (MSHA), we exposed three groups of Sprague-Dawley rats by inhalation for 6 hr to filtered air, MSHA, or MSHA passed though the HAPC. Twenty-four hours following exposure, bronchoalveolar lavage was performed to assess total cell count, differential cell count, protein, lactate dehydrogenase, and n-β[notdef]glucosaminidase levels. Peripheral blood was examined for packed cell volume, total protein, total white cells, and differential cell count. Morphologic studies localized particles in the lung and assessed pulmonary vasculature. No significant differences were observed among any of the groups in any parameter measured including morpho-metric analysis of pulmonary vasoconstriction. Scanning electron microscopy and X-ray analysis identified particles as silicates typical of MSHA throughout the lung. These findings suggest that particles passing through the HAPC have no change in their toxic potential in an exposure setting where particle deposition in the lung has occurred.  相似文献   

10.
Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO2) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO2 emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020.  相似文献   

11.
12.
In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore inertial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM2.5 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 72-77%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.  相似文献   

13.
ABSTRACT

In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore iner-tial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM25 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 7277%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.  相似文献   

14.
Abstract

Aerosol optical depth (AOD) acquired from satellite measurements demonstrates good correlation with particulate matter with diameters less than 2.5 µm (PM2.5) in some regions of the United States and has been used for monitoring and nowcasting air quality over the United States. This work investigates the relation between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and PM2.5 over the 10 U.S. Environmental Protection Agency (EPA)-defined geographic regions in the United States on the basis of a 2-yr (2005–2006) match-up dataset of MODIS AOD and hourly PM2.5 measurements. The AOD retrievals demonstrate a geographical and seasonal variation in their relation with PM2.5. Good correlations are mostly observed over the eastern United States in summer and fall. The southeastern United States has the highest correlation coefficients at more than 0.6. The southwestern United States has the lowest correlation coefficient of approximately 0.2. The seasonal regression relations derived for each region are used to estimate the PM2.5 from AOD retrievals, and it is shown that the estimation using this method is more accurate than that using a fixed ratio between PM2.5 and AOD. Two versions of AOD from Terra (v4.0.1 and v5.2.6) are also compared in terms of the inversion methods and screening algorithms. The v5.2.6 AOD retrievals demonstrate better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in the cloud-screening algorithm.  相似文献   

15.
16.
Data from multiple satellite remote sensors are integrated with ground measurements and meteorological data to study the impact of Greek forest fires in August 2007 on the air quality in Athens. Two pollution episodes were identified by ground PM10 measurements between August 23 and September 4. In the first episode, Evia and Peloponnese fires contributed substantially to the air pollution levels in Athens. In the second episode, transport of industrial pollution from Italy and Western Europe as well as forest fires in Albania contributed substantially to the air pollution levels in Athens. Local air pollution sources also contributed to the observed particle levels during these episodes. Satellite data provide valuable insights into the spatial distribution of particle concentrations, thus they can be used identify pollution sources. In spite of a few weaknesses in current satellite data products identified in this analysis, combining satellite aerosol remote sensing data with trajectory models and ground measurements is a powerful tool to study intensive particle pollution events such as forest fires.  相似文献   

17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号