首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are etaR, the product of the diffusion accessible porosity eta and the retardation factor R, and the apparent diffusion coefficient D(app) of dissolved silica in clay. For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible. Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests. Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient K(d) is in the range 25-75 cm(3) g(-1). The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2 x 10(-13) and 7 x 10(-13) m(2) s(-1). The pore diffusion coefficient is in the range from 6 x 10(-11) to 1 x 10(-10) m(2) s(-1).  相似文献   

2.
A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are ηR, the product of the diffusion accessible porosity η and the retardation factor R, and the apparent diffusion coefficient Dapp of dissolved silica in clay.For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible.Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests.Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient Kd is in the range 25–75 cm3 g−1. The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2×10−13 and 7×10−13 m2 s−1. The pore diffusion coefficient is in the range from 6×10−11 to 1×10−10 m2 s−1.  相似文献   

3.
Diffusion coefficients (T=23 +/- 2 degrees C) and accessible porosities for HTO, 36Cl(-) and 125I(-) were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na(+) and Cl(-) as the main components (I=0.42 M). The measured values of the effective diffusion coefficients (D(e)) and rock capacity factors (alpha) are: D(e)=1.2-1.5 x 10(-11) m(2) s(-1) and alpha=0.09-0.11 for HTO, D(e)=4.0-5.5 x 10(-12) m(2) s(-1) and alpha=0.05 for 36Cl(-) and D(e)=3.2-4.6 x 10(-12) m(2) s(-1) and alpha=0.07-0.10 for 125I(-). For non-sorbing tracers (HTO, 36Cl) the rock capacity factor alpha is equal to the diffusion-accessible porosity epsilon. The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of approximately 17% for HTO, approximately 28% for 36Cl(-) and approximately 30% for 125I(-). Moreover, the diffusion coefficients for 36Cl(-) and 125I(-) are smaller than for HTO, which is consistent with an effect arising from anion exclusion. The diffusion coefficients of HTO and 125I(-) measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

4.
Diffusion experiments in compacted bentonite have been carried out in situ using the borehole laboratory CHEMLAB. The "ordinary" anion iodide and the redox-sensitive pertechnetate ion have been investigated. In spite of strongly reducing groundwater conditions, technetium was found to diffuse mostly unreduced as TcO4-, although in some spots in the compacted clay, the activity was significantly higher, which may be explained by reduction of some TcO4- by iron-containing minerals in the bentonite. The measured concentration profiles in the clay cannot be accommodated by assuming one single diffusion process. The experimental data are modeled assuming two diffusion paths, intralamellar diffusion and diffusion in external water. The apparent diffusivity for the intralamellar diffusion was found to be 8.6 x 10(-11) m2 s(-1) for iodide with a capacity factor of 0.1, while the apparent diffusivity for the diffusion in external water was found to be 5 x 10(-14) m2 s(-1) with alpha=2.26. The corresponding values for Tc were found to be Da= 6 x 10(-11) m2 s(-1), alpha=0.1 and Da= 1 x 10(-13) m2 s(-1), alpha=0.46, respectively. The diffusion constants and capacity factors obtained in this study are in accordance with data from laboratory experiments.  相似文献   

5.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

6.
Heat generated by high level radioactive wastes could alter the performance of a clay repository. It was intended to investigate the effect of such a thermal period on the diffusive properties of Callovo-Oxfordian claystones. Thus, through-diffusion experiments with HTO, Cl-36, Na-22 and Cs-137 were performed before, during and after stages of heating at 80°C that lasted for up to one year. A special attention was paid to limit the occurrence of any chemical disturbance. Therefore (i) the temperature was raised to 80°C, then progressively brought back to 21°C, thanks to three intermediate temperature stages, and (ii) specific synthetic solutions were used for each temperature, chemistry of which being close to the equilibrium state, especially with respect to the carbonate and sulphate minerals. It was found that experiments carried out at 80°C showed a clear increase of the effective diffusion coefficient values for the four tracers with respect to those obtained at 21°C (by a factor of 3 for HTO and Cl-36, 5 for Na-22 and 2 for Cs-137). On the other hand, the porosity and rock capacity values did not exhibit any significant discrepancy between 21°C and 80°C, indicating no observable damage of both the pore conducing network and the sorption properties of clay minerals. The Stokes-Einstein relationship, based on the temperature dependency of the viscosity of bulk water, could be used to describe the temperature dependence of the diffusion of HTO and Cl-36 but failed to describe the diffusive evolution of the two sorbing cations, Na-22 and Cs-137. Furthermore, experiments performed after the thermal period led to diffusive properties well matching those obtained before heating. All these results suggest that at the lab scale the heating of rock samples would not alter the claystone containment properties.  相似文献   

7.
A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2 x 10(-21) m(2) and effective diffusion coefficients varying from 2.1 x 10(-14) to 1.9 x 10(-13) m(2)/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.  相似文献   

8.
In this study, an attempt has been made to model a real field scenario, whereby an initially almost saturated clay liner in a waste site is gradually drying, due to evaporation at its lower boundary. A detailed conceptual model that deals with the penetration and breakthrough of non-aqueous-phase-liquid (NAPL) in clay liners is introduced. Water content of clay samples was monitored during ambient evaporation through apertures at the base of sample holders. Clay drying rate served as the primary parameter for the NAPL breakthrough study. The interconnection between drying rates, structural damage formation (cracks and suction) and NAPL penetration is especially addressed. The processes taking place in the clay samples during drying appear to be associated with the capillary effects between the different fluid phases in the vicinity of either the NAPL-clay or the clay-air boundaries. A conceptual model of NAPL penetration and breakthrough of the clay layer has been considered, based on both indirect and direct observations of structural damages produced on either clay boundaries. A mutual interaction between these two boundaries is suggested and discussed. NAPL breakthrough is suggested to take place through cracks initiated on the upper soil surface.  相似文献   

9.
The measurement of diffusive properties of low-permeability rocks is of interest to the nuclear power industry, which is considering the option of deep geologic repositories for management of radioactive waste. We present a simple, non-destructive, constant source in-diffusion method for estimating one-dimensional pore diffusion coefficients (D(p)) in geologic materials based on X-ray radiography. Changes in X-ray absorption coefficient (Deltamicro) are used to quantify changes in relative concentration (C/C(0)) of an X-ray attenuating iodide tracer as the tracer solution diffuses through the rock pores. Estimated values of D(p) are then obtained by fitting an analytical solution to the measured concentration profiles over time. Measurements on samples before and after saturation with iodide can also be used to determine iodide-accessible porosity (phi(I)). To evaluate the radiography method, results were compared with traditional steady-state through-diffusion measurements on two rock types: shale and limestone. Values of D(p) of (4.8+/-2.5)x10(-11) m(2).s(-1) (mean+/-standard deviation) were measured for samples of Queenston Formation shale and (2.6+/-1.0)x10(-11) m(2).s(-1) for samples of Cobourg Formation limestone using the radiography method. The range of results for each rock type agree well with D(p) values of (4.6+/-2.0)x10(-11) m(2).s(-1) for shale and (3.5+/-1.8)x10(-11) m(2).s(-1) for limestone, calculated from through-diffusion experiments on adjacent rock samples. Low porosity (0.01 to 0.03) and heterogeneous distribution of porosity in the Cobourg Formation may be responsible for the slightly poorer agreement between radiography and through-diffusion results for limestones. Mean values of phi(I) for shales (0.060) and limestones (0.028) were close to mean porosity measurements made on bulk samples by the independent water loss technique (0.062 and 0.020 for shales and limestones, respectively). Radiography measurements offer the advantage of time-saving for diffusion experiments because the experiment does not require steady-state conditions and also allows for visualization of the small-scale heterogeneities in diffusive properties within rocks at the mm to cm scale.  相似文献   

10.
The present Spanish concept of a deep geological high level waste repository includes an engineered clay barrier around the canister. The clay presents a very high sorption capability for radionuclides and a very small hydraulic conductivity, so that the migration process of solutes is limited by sorption and diffusion processes. Therefore, diffusion and distribution coefficients in compacted bentonite (i.e. in "realistic" liquid to solid ratio conditions) are the main parameters that have to be obtained in order to characterise solute transport that could be produced after the canister breakdown. Through-Diffusion (TD) and In-Diffusion (ID) experiments with HTO, Sr, Cs and Se were carried out using compacted FEBEX bentonite, which is the reference material for the Spanish concept of radioactive waste disposal. Experiments were interpreted by means of available analytical solutions that allow the estimation of diffusion coefficients and, in some cases, distribution coefficients. Analytical solutions are simple to use, but rely on hypotheses that do not hold in all the experiments. These experiments were interpreted also using an automatic parameter estimation code that overcomes the limitations of analytical solutions. Numerical interpretation allows the simultaneous estimation of porosity, diffusion and distribution coefficients, accounts for the role of porous sinters and time-varying boundary concentrations, and can use different types of raw concentration data.  相似文献   

11.
A borehole in the Callovo–Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.  相似文献   

12.
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.  相似文献   

13.
Through-diffusion experiments with tritiated water were performed on argillaceous samples from various zones of the Tournemire test site. It was intended to evaluate the homogeneity of the transport property of unfracturated samples and the influence of the orientation and the nature of the samples (presence of an opened fracture or a pre-existing tectonic fracture filled with calcite and pyrite). Homogeneous values of the tritiated water (HTO) effective diffusion coefficients were deduced from experiments carried out when diffusion occurred parallel to the stratigraphic bedding, with an apparent sensitivity to experimental conditions. Anisotropy was significant, De(HTO) perpendicular to the bedding being 1/3 lower than that parallel to the bedding. The observed fractures of the samples created by mechanical stress and partial dehydration during sawing and the presence of a pre-existing opened fracture did not affect the effective diffusion coefficients of tritiated water, which is probably due to the healing ability of the clayey medium during the re-saturation phases of the equilibrium steps performed prior to the diffusion experiments. On the contrary, a significant decrease of this transport parameter was induced by the occurrence of a pre-existing tectonic fracture, which was assigned to the dense structure of the filling phases.  相似文献   

14.
For the performance assessment study of a geological disposal of High Level Waste (HLW) in clayey formations, migration studies are essential. For low permeability soils (clays), classical diffusion studies take a very long time. In order to reduce the experimental time, we propose an electrical field as driving force to accelerate the migration of ionic species. This paper reports the assessment of the electromigration technique as a powerful new and fast technique for migration studies. The apparent molecular diffusion coefficient can be derived by two independent methods using the migration parameters obtained from an electromigration experiment, namely the apparent dispersion coefficient and the apparent convection velocity. First, it can be calculated from the velocity of the migrating species by the Einstein relation. But, corrections are necessary for electroosmotic flow. The apparent electroosmotic mobility is experimentally determined as 2.2·10−9 m2/Vs. Second, it can be calculated from the relation between the apparent dispersion coefficient and the total apparent convection velocity. But it is necessary to know the dispersion length of the medium. The dispersion length for Boom Clay is experimentally determined as 8·10−5 m. Because of the serious reduction in time, it becomes possible to run series of experiments at different electrical fields to obtain averaged values for the apparent molecular diffusion coefficient according to the two methods. Experiments at different electrical fields have another advantage: the intercept of the linear relationship between the total apparent convection velocity and the apparent dispersion coefficient gives the apparent molecular diffusion coefficient. The apparent molecular diffusion coefficients obtained for 85Sr, 131I and HTO are respectively 0.8·10−11, 15·10−11, and 24·10−11 m2/s. These values are confirmed by pure diffusion experiments. The excellent agreement with the apparent molecular diffusion coefficients obtained by classical diffusion tests clearly demonstrates the feasibility of the electromigration technique for the determination of diffusion coefficients.  相似文献   

15.
Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.  相似文献   

16.
Diffusion experiments through hardened cement pastes (HCP) using tritiated water (HTO) and 22Na(+), considered to be conservative tracers, have been carried out in triplicates in a glove box under a controlled nitrogen atmosphere. Each experiment consisted of a through-diffusion test followed by an out-diffusion test. The experimental data were inversely modelled applying an automated Marquardt-Levenberg procedure. The analysis of the through-diffusion data allowed the extraction of values for the effective diffusion coefficients, D(e), and the rock capacity factor, alpha. Good agreement between measured and calculated tracer breakthrough curves was achieved using both a simple diffusion model without sorption and a diffusion/linear sorption model. The best-fit K(d)-values were found to be consistent with R(d)-values measured in previous batch-sorption experiments. The best-fit values from the through-diffusion tests were then used to predict the results of subsequent out-diffusion experiments. Good agreement between experimental data and predictions was achieved only for the case of linear sorption. Isotopic exchange can only partially account for both the amount of tracer taken up in the batch-sorption tests and the measured retardation in the diffusion experiments and, hence, additional mechanisms have to be invoked to explain the data.  相似文献   

17.
A thermodynamic sorption model and a diffusion model based on electric double layer (EDL) theory are integrated to yield a surface chemical model that treats porewater chemistry, surface reactions, and the influence of charged pore walls on diffusing ions in a consistent fashion. The relative contribution of Stern and diffuse layer to the compensation of the permanent surface charge represents a key parameter; it is optimized for the diffusion of Cs in Kunipia-F bentonite, at a dry density of 400 kg/m3. The model is then directly used to predict apparent diffusivities (Da) of Cs, Sr, Cl-, I- and TcO4- and corresponding distribution coefficients (Kd) of Cs and Sr in different bentonites as a function of dry density, without any further adjustment of surface chemical and EDL parameters. Effective diffusivities (De) for Cs, HTO, and TcO4- are also calculated. All calculated values (Da, De, Kd) are fully consistent with each other. A comparison with published, measured data shows that the present model allows a good prediction and consistent explanation of (i) apparent and effective diffusivities for cations, anions, and neutral species in compacted bentonite, and of (ii) Kd values in batch and compacted systems.  相似文献   

18.
Argillaceous formations are thought to be suitable natural barriers to the release of radionuclides from a radioactive waste repository. However, the safety assessment of a waste repository hosted by an argillaceous rock requires knowledge of several properties of the host rock such as the hydraulic conductivity, diffusion properties and the pore water composition. This paper presents an experimental design that allows the determination of these three types of parameters on the same cylindrical rock sample. The reliability of this method was evaluated using a core sample from a well-investigated indurated argillaceous formation, the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL) (Switzerland). In this test, deuterium- and oxygen-18-depleted water, bromide and caesium were injected as tracer pulses in a reservoir drilled in the centre of a cylindrical core sample. The evolution of these tracers was monitored by means of samplers included in a circulation circuit for a period of 204 days. Then, a hydraulic test (pulse-test type) was performed. Finally, the core sample was dismantled and analysed to determine tracer profiles. Diffusion parameters determined for the four tracers are consistent with those previously obtained from laboratory through-diffusion and in-situ diffusion experiments. The reconstructed initial pore-water composition (chloride and water stable-isotope concentrations) was also consistent with those previously reported. In addition, the hydraulic test led to an estimate of hydraulic conductivity in good agreement with that obtained from in-situ tests.  相似文献   

19.
Hadad HR  Maine MA  Bonetto CA 《Chemosphere》2006,63(10):1744-1753
A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.  相似文献   

20.
Bacterial transport through cores of intact, glacial-outwash aquifer sediment was investigated with the overall goal of better understanding bacterial transport and developing a predictive capability based on the sediment characteristics. Variability was great among the cores. Normalized maximum bacterial-effluent concentrations ranged from 5.4x10(-7) to 0.36 and effluent recovery ranged from 2.9x10(-4) to 59%. Bacterial breakthrough was generally rapid with a sharp peak occurring nearly twice as early as the bromide peak. Bacterial breakthrough exhibited a long tail of relatively constant concentration averaging three orders of magnitude less than the peak concentration for up to 32 pore volumes. The tails were consistent with non-equilibrium detachment, corroborated by the results of flow interruption experiments. Bacterial breakthrough was accurately simulated with a transport model incorporating advection, dispersion and first-order non-equilibrium attachment/detachment. Relationships among bacterial transport and sediment characteristics were explored with multiple regression analyses. These analyses indicated that for these cores and experimental conditions, easily-measurable sediment characteristics--median grain size, degree of sorting, organic-matter content and hydraulic conductivity--accounted for 66%, 61% and 89% of the core-to-core variability in the bacterial effective porosity, dispersivity and attachment-rate coefficient, respectively. In addition, the bacterial effective porosity, median grain size and organic-matter content accounted for 76% of the inter-core variability in the detachment-rate coefficient. The resulting regression equations allow prediction of bacterial transport based on sediment characteristics and are a possible alternative to using colloid-filtration theory. Colloid-filtration theory, used without the benefit of running bacterial transport experiments, did not as accurately replicate the observed variability in the attachment-rate coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号