共查询到18条相似文献,搜索用时 109 毫秒
1.
重庆市大气颗粒物污染特征及影响因素分析 总被引:1,自引:1,他引:1
利用重庆市17个大气自动站实时发布的数据,对PM_(2.5)与PM_(10)污染特征、变化规律与气象因子的相关性进行了分析。结果表明:2013年PM_(2.5)和PM_(10)的年均值分别为70,106μg/m3,均超过国家Ⅱ级标准。月均值、季均值变化明显,总体均呈两头高中间低的"U"型分布。2013年PM_(2.5)占PM_(10)的比例较大,均值为65.8%,PM_(2.5)和PM_(10)的Pearson相关系数为0.974,在0.01的置信水平上(双侧)显著相关。PM_(2.5)、PM_(10)的浓度与气温、大气压极显著相关;PM_(2.5)、PM_(10)的浓度与降雨量、日照时数(时)显著相关。 相似文献
2.
3.
4.
济南市春季大气颗粒物污染研究 总被引:8,自引:2,他引:8
对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素. 相似文献
5.
不同燃烧过程颗粒物粒径排放特征 总被引:5,自引:0,他引:5
采用荷电低压颗粒物撞击器(ELPI)和稀释采样系统研究重庆市工业源、交通源、生物质燃烧以及餐饮业油烟等各类燃烧过程的颗粒物排放特征.结果表明:燃煤锅炉以及各类柴油交通源颗粒物数浓度峰值都表现出单峰型的变化特征,峰值主要出现在0.20~0.48μm之间;生物质燃烧和餐饮业油烟颗粒物的数浓度都呈现出双峰型的变化趋势,分别出现在核模态(0.02~0.07μm)和积聚态(0.2μm);水泥窑炉的数浓度也出现双峰型变化特征,分别出现在积聚态(0.12μm)以及接近粗颗粒物态的1.23~1.96μm粒径范围处.各污染源颗粒物质量浓度峰值主要出现在粗粒径态,交通源排放的颗粒物质量浓度相对较高.各类污染源数浓度分布主要集中在积聚模态,粗颗粒态的数浓度累计贡献都不到1%;质量浓度主要分布在粗颗粒态,核模态的质量浓度贡献都小于0.1%. 相似文献
7.
8.
随着城市化和工业化进程的加快,空气颗粒物污染成为城市最为严峻的环境问题之一.依据植被的横向结构、竖向结构及植被类型3个因子对宝鸡市公园绿地进行划分,并选取11种不同植被结构的绿地,在分析地点、时间、风速、温度、相对湿度、绿地面积等环境因子对绿地内空气中ρ(PM2.5)和ρ(PM10)"本底效应"影响的基础上,探究不同植被结构绿地对空气颗粒物质量浓度削减作用的差异.结果表明:①在不同监测地点和监测时段内,ρ(PM2.5)和ρ(PM10)有极显著差异,植物养护管理程度较高的城市公园绿地对空气颗粒物质量浓度削减作用较为明显,一天中空气颗粒物质量浓度呈现出早晚高、中午低的变化趋势;②风速、温度、相对湿度对ρ(PM2.5)和ρ(PM10)有极显著影响,在晴朗、无风或微风天气条件下,ρ(PM2.5)和ρ(PM10)随风速的增大、温度的减小、相对湿度的增大而增大,且ρ(PM10)变化范围大于ρ(PM2.5);③1 hm2以下绿地面积的变化对ρ(PM2.5)和ρ(PM10)无显著影响;④不同植被结构绿地内ρ(PM2.5)无显著差异,但ρ(PM10)有极显著差异,其中开敞式以灌木为主的绿地中ρ(PM10)最低,多层闭合式阔叶林中ρ(PM10)最高,其余9种植被结构绿地削减作用居中且相近.研究显示,不同植被结构的城市公园绿地对ρ(PM2.5)和ρ(PM10)的削减作用存在一定的差异且受多种环境因素的共同制约,可为优化城市绿地植被结构进而有效改善空气质量提供依据. 相似文献
9.
10.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。 相似文献
11.
北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系 总被引:18,自引:12,他引:18
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素. 相似文献
12.
运用连续颗粒物采样仪(URG Model 2000-01J)对贵阳市城区大气颗粒物PM2.5进行了连续3个月(9~11月)的采集与分析,探讨了PM2.5的浓度分布特征、气象条件的影响。结果显示,贵阳市大气颗粒物PM2.5的平均质量浓度为53±27μg/m3,变化范围为3.7~186μg/m3;初步推断大气颗粒物PM2.5的污染来源主要是燃料燃烧、生物质燃烧、汽车尾气等人为源;相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。 相似文献
13.
为了研究河北省边界层气象要素与PM2.5的关系,综合利用常规气象探测资料、逐小时地面自动站气象观测资料、环境监测站逐小时AQI及ρ(PM2.5)资料等进行了统计分析.结果表明:①冬季海平面气压低于1 030 hPa、24 h变压为-3.0~-2.0 hPa、地面相对湿度高于60%、露点温度高于-10 ℃时发生全省性重污染天气的可能性较大;而海平面气压高于1 040 hPa、24 h变压在4.0 hPa以上、地面相对湿度低于40%、露点温度低于-10 ℃时,有利于清洁天气的出现.清洁天气下边界层的盛行风向多与冷空气活动有关;污染天气下盛行风向有区域性差别,边界层小风(<3.0 m/s)的风速频率高于90%. ②过程雨量达到中雨及以上量级的降水对PM2.5具有较明显的清除作用,中雨量级降水对PM2.5清除速率约为2 h,但优良空气质量持续时间短,平均为15 h;大雨及以上量级的降水对PM2.5清除率达67.8%,并且优良空气质量可以持续27 h. ③与降水相比,风对PM2.5的清除作用更为显著.较强偏南风对空气质量有一定改善,但优良空气质量仅持续16 h;大于3.0 m/s的系统性偏北风对PM2.5清除率高达85.1%,优良空气质量持续长达32 h,空气质量的改善最为彻底.研究显示,PM2.5与边界层气象要素关系紧密,不同级别的风和降水对PM2.5的清除程度存在显著差异. 相似文献
14.
对闸北区空气自动监测站2009年SO2、NO2、PM10的浓度和气象参数变化特征进行研究,可吸入颗粒物的时间变化特征表明,总体上呈现冬春季高、夏秋季低;PM10与降水量、相对湿度、温度呈现一定的负相关性,但与风速的相关性随季节不同而不同,与气压略呈正相关性。对典型日和灰霾日PM10、SO2、NO2以及相应气象因子的特征进行了分析比较。 相似文献
15.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5... 相似文献
16.
依据实测北京冬季人体呼吸高度PM_(2.5)质量浓度、湿度、风速、风向、温度数据,利用相关性分析、非线性回归分析、统计分析,分别探讨轻中度空气污染天、一次重污染过程,气象因子对PM_(2.5)质量浓度生成、变化的影响.结果表明:1轻中度污染天,若温度较低、日平均风速较小,湿度大时,湿度是影响PM_(2.5)质量浓度变化的决定性因素;而温度、风速、湿度均较大时,PM_(2.5)质量浓度变化受三者共同作用;当风速、湿度、温度均较小时,PM_(2.5)质量浓度变化主要受前两者影响.这反映出,人体呼吸高度的PM_(2.5)质量浓度变化对气象因子微小变化响应极为敏感.2一次空气质量从良到重度污染的过程中,PM_(2.5)质量浓度积累主要是由于空气湍流较弱、加之湿度大导致的,此外白天西北风、东北风较大,但持续时间短,而夜间东南风、西南风风速较小,持续时间长,也有利于污染物的累积.3短时微小量降雪使温度降低、空气湿度增加,不仅不能降低PM_(2.5)质量浓度,反而使其上升了72%,造成颗粒物浓度的跃升现象.4短时风速较大,风速达到2.0 m·s~(-1),持续2 h,虽然在一定程度上降低局地PM_(2.5)质量浓度,但并不能彻底改变空气质量状况.只有当风速大于3.5 m·s~(-1),且持续4 h以上,才能够迅速地扩散空气中的细颗粒物,空气质量由重度污染转变为优. 相似文献
17.
为了解济南市不同粒径大气颗粒物暴露对老年人群血清淀粉样蛋白P组分(SAP)的急性影响,评估大气颗粒物暴露对人群神经系统的健康风险,以山东省济南市甸柳社区为研究地点,采用定群研究设计,对社区76名健康老年人进行5次重复测量,结合社区附近(< 2 km)环保监测超级站的PM2.5和PM10浓度数据,在控制年龄、性别等协变量情况下,利用线性混合效应模型分别分析PM2.5和PM10暴露对SAP的效应影响.结果表明:大气颗粒物短期暴露与老年人群SAP的升高呈正相关;PM2.5累积滞后0~6 h,每升高1个四分位数间距(IQR),SAP水平升高18.73%(95% CI为9.20%~29.08%)(FDRH-P < 0.05)(其中,CI为可信区间,FDRH-P为经多重校正后的P值);PM10累积滞后0~6 h,每升高1个IQR,SAP水平亦升高,但变化不显著(FDRH-P>0.05).研究显示,大气颗粒物暴露可以引起人群反应神经退行性病变的SAP指标升高,提示大气颗粒物对人群神经系统具有潜在威胁;PM2.5对SAP的效应高于PM10,提示小粒径颗粒物具有较高的健康危害,应加强对小粒径颗粒物的健康影响和干预防护研究. 相似文献
18.
为研究渭南市区2014?—?2016年的冬春季雾霾天气的特点,选取覆盖渭南市区的4个监测站点,分析渭南市区PM_(10)和PM_(2.5)污染时间分布特征;同时选取日平均气温、相对湿度、风等气象因素,用线性回归分析法分析各个气象因素同大气中PM_(10)和PM_(2.5)的相互关系。研究发现:三年来冬季PM_(10)和PM_(2.5)的日变化的峰值主要出现在12月—?次年1月;春季PM_(10)和PM_(2.5)的逐日变化的峰值主要出现在3月;日内的周期变化趋势呈多次波动。渭南市区冬春PM_(10)和PM_(2.5)的质量浓度与风速、气温呈负相关,与相对湿度呈正相关,为雾霾的形成创造了条件,在冬季温度较高的情况下以及相对湿度较大的情况下应加强防范。在冬季12月—?次年1月和春季3月应注意雾霾的防范和治理,燃煤企业要安装脱硫脱硝装置,居民日常生活中尽量减少生物燃料的燃烧,同时政府应根据污染物排放量征税,用制度保护环境。 相似文献