首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.  相似文献   

2.
Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.  相似文献   

3.
Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 °C) and ice (−15 °C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments.  相似文献   

4.
Using data from a variety of sources, land use and vegetation in Texas were mapped with a spatial resolution of approximately 1 km. Over 600 classifications were used to characterize the land use and land cover throughout the state and field surveys were performed to assign leaf biomass densities, by species, to the land cover classifications. The total leaf biomass densities associated with these land use classifications ranged from 0 to 556 g/m2, with the highest assigned total and oak leaf biomass densities located in central and eastern Texas. The land cover data were used as input to a biogenic emissions model, GLOBEIS2. Estimates of biogenic emissions of isoprene based on GLOBEIS2 and the new land cover data showed significant differences when compared to biogenic isoprene emissions estimated using previous land cover data and emission estimation procedures. For example, for one typical domain in eastern Texas, total daily isoprene emissions increased by 38% with the new modeling tools. These results may ultimately affect the way in which ozone and other photochemical pollutants are modeled and evaluated in the state of Texas.  相似文献   

5.
6.
Greening of the Arctic due to climate warming may provide herbivores with richer food supplies, resulting in higher herbivore densities. In turn, this may cause changes in vegetation composition and ecosystem function. In 1982-1984, we studied the ecology of non-breeding moulting geese in Jameson Land, low Arctic East Greenland. By then, geese consumed most of the graminoid production in available moss fens, and it appeared that the geese had filled up the available habitat. In 2008, we revisited the area and found that the number of moulting geese and the temperature sum for June-July had tripled, while the above-ground biomass in a moss fen ungrazed by geese had more than doubled. In a goose-grazed fen, the overall plant composition was unchanged, but the frequency of graminoids had decreased and the area with dead vegetation and open spots had increased. We suggest that climate warming has lead to increased productivity, allowing for higher numbers of moulting geese. However, the reduction of vegetation cover by grazing may have longer term negative consequences for the number of geese the habitat can sustain.  相似文献   

7.
论述了用于柴油车排气微粒捕集器的复合金属丝网的制备和测试过程 ,讨论了丝网层数和涂层负载对复合金属丝网过滤性能的影响 ,并分析了其捕集机理  相似文献   

8.
High levels of species richness and endemism make Myanmar a regional priority for conservation. However, decades of economic and political sanctions have resulted in low conservation investment to effectively tackle threats to biodiversity. Recent sweeping political reforms have placed Myanmar on the fast track to economic development—the expectation is increased economic investments focused on the exploitation of the country’s rich, and relatively intact, natural resources. Within a context of weak regulatory capacity and inadequate environmental safeguards, rapid economic development is likely to have far-reaching negative implications for already threatened biodiversity and natural-resource-dependent human communities. Climate change will further exacerbate prevailing threats given Myanmar’s high exposure and vulnerability. The aim of this review is to examine the implications of increased economic growth and a changing climate within the larger context of biodiversity conservation in Myanmar. We summarize conservation challenges, assess direct climatological impacts on biodiversity and conclude with recommendations for long-term adaptation approaches for biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号