首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The social organization of gregarious lemurs significantly deviates from predictions of the socioecological model, as they form small groups in which the number of males approximately equals the number of females. This study uses models of reproductive skew theory as a new approach to explain this unusual group composition, in particular the high number of males, in a representative of these lemurs, the redfronted lemur (Eulemur fulvus rufus). We tested two central predictions of “concession” models of reproductive skew theory, which assume that subordinates may be allowed limited reproduction by dominant group members as an incentive to remain in the group, thereby increasing the group’s overall productivity. Accordingly, relatives are predicted to receive less reproduction than non-relatives, and the overall amount of reproductive concessions given to subordinates is predicted to increase as the number of subordinates increases. In addition, we tested whether the number of females in a group, a variable not previously incorporated in reproductive skew theory, affected reproductive skew among males. Using microsatellite analyses of tissue DNA, we determined paternities of 49 offspring born into our study population in Kirindy forest (western Madagascar) since 1996 to determine patterns of male reproductive skew to test these predictions. Our analyses revealed remarkable reproductive skew, with 71% of all infants being sired by dominant males, but both predictions of reproductive skew models could not be supported. Instead, the number of females best predicted the apportionment of reproduction among the males in this species, suggesting that current reproductive skew models need to incorporate this factor to predict reproductive partitioning among male primates and perhaps other group-living mammals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Both Peter M. Kappeler and Markus Port contributed equally to this paper.  相似文献   

2.
We used DNA fingerprinting to examine the genetic parentage and mating system of the cooperatively breeding white-browed scrubwren, Sericornis frontalis, in Canberra, Australia. Our analyses revealed a remarkable variety of mating tactics and social organization. Scrubwrens bred in pairs or multi-male groups that consisted of a female and two or more males. Females were always unrelated to the pair male or alpha (dominant) male. Among multi-male groups we found three different mating tactics. Firstly, when alpha and beta (subordinate) males were unrelated, they usually shared paternity in the brood. This resulted in both males gaining reproductive benefits directly. Secondly, when beta males were not related to the female but were related to the alpha males, beta males sired offspring in some broods. In this situation, beta males gained reproductive benefits both directly and potentially indirectly (through the related alpha male). Thirdly, when beta males were related to the female or both the female and alpha male, they remained on their natal territory and did not sire any offspring. Thus beta males gained only indirect reproductive benefits. Overall, when group members were related closely, the dominant male monopolized reproductive success, whereas when the members were not related closely the two males shared paternity equally. This positive association between monopolization of reproduction and relatedness is predicted by models of reproductive skew, but has not been reported previously within a single population of birds. Other cooperatively breeding birds with both closely related and unrelated helpers may show a similar variety of mating tactics. Finally, we found that extra-group paternity was more common in pairs (24% of young) than in multi-male groups (6%), and we discuss three possible reasons for this difference. Received: 21 May 1996 / Accepted after revision: 14 December 1996  相似文献   

3.
In cooperative breeders, mature males may compete for fertilizations. In this study, we measured the degree of multiple paternity in a natural population of a cooperatively breeding fish. Neolamprologus pulcher (Perciformes: Cichlidae) is a highly social cichlid endemic to Lake Tanganyika. We used highly variable microsatellite loci to survey 12 groups with an average number of 10.6 brood care helpers per group and a total of 43 offspring (mean 3.6 per brood). In 11 of 12 groups, all young were assigned to the dominant female. The dominant male sired all offspring in three groups, part of the offspring in four groups, and in five groups, he had no paternity at all. In total, 44.2% of young were not fathered by the current male territory owner. Multiple paternity was found in 5 of 12 broods (41.7 %), with 8 of 35 young (22.9 %) being sired by males other than the respective territory owners. This is an exceptionally high rate of extra-pair paternity among cooperatively breeding vertebrates. Neither helpers present in these territories during collection nor neighbouring males were unequivocally assigned to have sired these extra-pair young. However, behavioural observations suggest that male helpers may have produced these young before being expelled from the territory in response to this reproductive parasitism. We discuss these results in the light of reproductive skew theory, cooperative breeding in vertebrates and alternative reproductive tactics in fish.  相似文献   

4.
Contrary to classical sexual selection theories, females of many taxa mate with multiple males during one reproductive cycle. In this study, we conducted an experiment on the “trade-up hypothesis”, which proposes that females remate if a subsequently encountered male is potentially superior to previous mates to maximize the genetic quality of their offspring. We presented bank vole females (Clethrionomys glareolus) sequentially with two males of known dominance rank in different orders, i.e., either first subordinate and second dominant, first dominant and second subordinate, or two males that were equal in dominance (high ranking) and observed their mating behavior. We found that 92% of the females mated multiply and did not base their remating decision on male social status. Therefore, polyandry cannot be explained by the “trade-up hypothesis” based on dominance rank in this species. However, we found that dominant males sired significantly more offspring than subordinate males. This varied according to mating order: dominant males sired more offspring when they were second than when they were first. Moreover, litter sizes were significantly smaller when the dominant male was first (smallest relative success of dominant males) compared to litter sizes when mating order was reversed or both males equal in status. Our results suggest that even though multimale mating includes males that are of poorer quality and thus potentially decreases the fitness of offspring, most of a female’s offspring are sired by dominant males. Whether this is due to cryptic female choice, sperm competition, or a combination of both, remains to be tested.  相似文献   

5.
Ornamental traits are thought to evolve because they give individuals an advantage in securing multiple mates. Thus, the presence of ornamentation among males in many monogamous bird species presents something of a conundrum. Under certain conditions, extra-pair paternity can increase the variance in reproductive success among males, thus increasing the potential for sexual selection to act. We addressed this possibility in the mountain bluebird (Sialia currucoides), a socially monogamous songbird in which males possess brilliant ultraviolet (UV)-blue plumage. Specifically, we asked whether a male’s success at siring offspring within his own nest and within the nests of other males was related to his coloration. In pairwise comparisons, males that sired extra-pair offspring were not more colorful than the males that they cuckolded. However, males that sired at least one extra-pair offspring were, on average, brighter and more UV-blue than males that did not sire extra-pair offspring. Brighter, more UV-blue males sired more offspring both with their own mate and tended to sire more offspring with extra-pair mates and thus sired more offspring overall. Our results support the hypothesis that the brilliant UV-blue ornamental plumage of male mountain bluebirds evolved at least in part because it provides males with an advantage in fertilizing the eggs of multiple females.  相似文献   

6.
Male traits and behaviours acting in mate choice and intrasexual competition are expected to be congruent. When studying their evolution, this often makes it difficult to differentiate between these two components of sexual selection. Studies are therefore needed on mate choice in conjunction with the role of displays and dominance. We present the results from two experiments conducted to investigate the effects of male dominance and courtship displays on female choice in the ring-necked pheasant, Phasianus colchicus, controlling for differences in morphological male traits. We found: (1) different courtship behaviours had different effects on female choice: females were mainly attracted by the feeding courtship behaviour, while another courtship display (the lateral display) was effective in producing the copulation-acceptance response by the females; (2) subordinate males performed the courtship behaviour before females less frequently than dominant males, and females reinforced intrasexual selection by choosing dominant males, and (3) subordinate males in visual contact with a dominant became less attractive to females. The results support the idea (armament-ornament model) that female pheasants may benefit from using traits selected in male-male competition as clues for mate choice. Received: 23 October 1997 / Accepted after revision: 7 October 1998  相似文献   

7.
Kin-biased social tolerance among house mice has been interpreted in terms of kin discrimination. However, several lines of evidence suggest it may instead be an incidental artifact of group member discrimination. This leads to very different predictions about the social consequences of relatedness within and between social groups. Social interactions between wild-stock adult female and juvenile house mice (Mus domesticus) established in neighbouring territorial groups within enclosures reveal relatedness to dominant males within groups as the major factor determining social tolerance of juveniles by females. Relatedness to the female herself had no significant independent effect on responses indicating tolerance. Females were generally more aggressive toward neighbouring-group juveniles (all unrelated to females) compared with those from their own group (all related to females), but were most aggressive toward neighbouring juveniles sired by the neighbouring dominant male. They were also more aggressive toward their own-group juveniles that had been sired by the neighbouring dominant but only when encountered in the neighbouring territory and with a greater bias against female juveniles. Females were least aggressive toward own-group juveniles sired by their own-group dominant male. The sire-bias in tolerance among females is similar to that reported among the dominant males themselves in an earlier study. As a result of the combined sire-bias in tolerance by adult males and females, juveniles sired by their own-group dominant males become less likely to intrude into a neighbouring territory with time. Overall, the results suggest that differences in social tolerance reflect discrimination on the basis of social group membership rather than relatedness between interactants and thus provide strong experimental evidence in support of incidental kin bias rather than kin discrimination.  相似文献   

8.
In a genetic analysis of the mating system of cooperatively breeding Arabian babblers (Timalidae: Turdoides squamiceps), we identified which individuals in the population are breeding, and how reproductive success was distributed among group members with respect to their dominance rank, for both males and females. The population was characterized by an asymmetrical distribution of reproductive success; behaviorally dominant males produced 176 of 186 (95%) of the offspring in 44 social groups analyzed, and alpha females produced 185 of 186 (99.5%). We evaluated models of reproductive skew by examining genetic and demographic correlates of reproduction by␣subordinates. Subordinate (beta) males that sired young were more likely to be recent dispersers from their natal groups or members of newly formed groups than betas that did not reproduce. Breeding beta males had spent smaller proportions of their lives with the current alpha male and female as alphas than had beta males that did not sire young. One consequence of the linkage of dispersal with breeding in newly formed, nonnatal groups is that beta males that sired young had significantly lower genetic similarity to the alpha males in their groups (based on band-sharing coefficients using multilocus minisatellite DNA fingerprinting) than those that did not sire young. This pattern may occur generally in species in which group membership accrues both through nondispersal of young (forming groups of relatives) as well as through dispersal involving coalitions that sometimes include nonrelatives. Received: 22 July 1997 / Accepted after revision: 5 February 1998  相似文献   

9.
The aim of this study was to investigate reproductive strategies and their consequences in gray mouse lemurs (Microcebus murinus), small solitary nocturnal primates endemic to Madagascar. Previous reports of sexual dimorphism in favor of males and females, respectively, a high potential for sperm competition and pheromonal suppression of mating activity among captive males, led us to investigate mechanisms of intrasexual competition in a wild population. Based on 3 years of mark-recapture data, we demonstrate that sexual dimorphism in this species fluctuated annually as a result of independent changes in male and female body mass. Male body mass increased significantly prior to the short annual mating season. Because their testes increased by 100% in the same period and because their canines are not larger than those of females, we suggest that large male size may be advantageous in searching for estrous females and in enabling them to sustain periods of short-term torpor. In contrast to reports from captive colonies, we found no evidence for two morphologically distinct classes of males. Finally, we also show that most adult males are active throughout the cool dry season that precedes the mating season, whereas most adult females hibernate for several months. This is in contrast to other solitary hibernating mammals, where males typically emerge 1–2 weeks before females. Thus, this first extended field study of M.␣murinus clarified previous conflicting reports on sexual dimorphism and male reproductive strategies in this primitive primate by showing that their apparent deviation from predictions of sexual selection theory is brought about by specific environmental conditions which result in sex-specific life history tactics not previously described for mammals. A general conclusion is that sexual selection can operate more strongly on males without resulting in sexual dimorphism because of independent selection on the same traits in females. Received: 6 July 1997 / Accepted after revision: 28 March 1998  相似文献   

10.
Sex-specific interests over the maximization of reproductive success lead to an inter-sexual conflict over the optimal mating system in a species. Traditionally, the outcome of this inter-sexual conflict has been studied from the male perspective but it also depends on female mating strategies, such as manipulating the temporal distribution of sexual activity, advertisement, and mate choice. We used a small nocturnal primate, the gray mouse lemur (Microcebus murinus) to determine the relative importance of female mating strategies on the outcome of this conflict in a species where females are solitary during their activity period. We studied their mating behavior over three consecutive annual mating seasons and determined the genetic relationships among more than 300 study animals to quantify individual reproductive success. We found that most females were receptive asynchronously. Females did not exhibit any obvious direct mate choice, probably due to a highly male-biased operational sex ratio and the corresponding costs of choosiness. However, females exercised indirect choice for multiple matings. They mated with 1–7 males up to 11 times during their single night of receptivity. As a result, mixed paternity was common but heavier males sired more offspring, meaning that indirect female choice for superior males cannot be excluded. Females exhibited a mixed mating strategy, avoiding costly direct mate choice but still counteracting male efforts to monopolize mating, successfully increasing genetic variability among offspring. Thus, females had a major influence on the outcome of the inter-sexual conflict despite male monopolization attempts.Communicated by J. Setchell  相似文献   

11.
In a wide variety of species, male reproductive success is determined by contest for access to females. Among multi-male primate groups, however, factors in addition to male competitive ability may also influence paternity outcome, although their exact nature and force is still largely unclear. Here, we have investigated in a group of free-ranging Barbary macaques whether paternity is determined on the pre- or postcopulatory level and how male competitive ability and female direct mate choice during the female fertile phase are related to male reproductive success. Behavioural observations were combined with faecal hormone analysis for timing of the fertile phase (13 cycles, 8 females) and genetic paternity analysis (n = 12). During the fertile phase, complete monopolisation of females did not occur. Females were consorted for only 49% of observation time, and all females had ejaculatory copulations with several males. Thus, in all cases, paternity was determined on the postcopulatory level. More than 80% of infants were sired by high-ranking males, and this reproductive skew was related to both, male competitive ability and female direct mate choice as high-ranking males spent more time in consort with females than low-ranking males, and females solicited copulations mainly from dominant males. As most ejaculatory copulations were female-initiated, female direct mate choice appeared to have the highest impact on male reproductive success. However, female preference was not directly translated into paternity, as fathers were not preferred over non-fathers in terms of solicitation, consortship and mating behaviour. Collectively, our data show that in the Barbary macaque, both sexes significantly influence male mating success, but that sperm of several males generally compete within the female reproductive tract and that therefore paternity is determined by mechanisms operating at the postcopulatory level.  相似文献   

12.
Brown jays (Cyanocorax morio) are long-lived, social corvids that live in large, stable, territorial groups (mean = 10 individuals). In this study, I determined the distribution of reproductive success within groups using multi-locus DNA fingerprinting. Breeding females produced virtually all (99%) of the young within their own nests. Reproduction within groups was highly skewed towards a single primary female, although long term data indicate that secondary females (female breeders that were usually younger and subordinate to the primary female) were sometimes successful. The high reproductive skew observed for females was associated with primary female aggression. Successful reproduction by secondary females may have been due to parental facilitation or the inability of primary females to completely suppress secondary females. Multiple paternity occurred in 31–43% of broods and extra-group paternity occurred in a minimum of 22% of broods. Patterns of paternity also varied between years, since females often switched or included new genetic mates. Although male consorts of nesting females fathered relatively few offspring (20%), they still had a higher chance of fathering offspring than any other single group male. Reproduction was less skewed for males than females as a result of female mating patterns. Female reproductive patterns are consistent with some of the predictions and assumptions from optimal skew models, while male reproductive patterns are not. The factors affecting skew in species with complex social systems such as incomplete control by breeders over subordinate reproduction, female control of paternity, and resource inheritance have not been well incorporated into reproductive skew models.Communicated by: J. Dickinson  相似文献   

13.
A fundamental question of sexual selection theory concerns the causes and consequences of reproductive skew among males. The priority of access (PoA) model (Altmann, Ann NY Acad Sci 102:338–435, 1962) has been the most influential framework in primates living in permanent, mixed-sex groups, but to date it has only been tested with the appropriate data on female synchrony in a handful of species. In this paper, we used mating data from one large semi-free ranging group of Barbary macaques: (1) to provide the first test of the priority-of-access model in this species, using mating data from 11 sexually active females (including six females that were implanted with a hormonal contraceptive but who showed levels of sexual activity comparable to those of naturally cycling females) and (2) to determine the proximate mechanism(s) underlying male mating skew. Our results show that the fit of the observed distribution of matings with sexually attractive females to predictions of the PoA model was poor, with lower-ranking males mating more than expected. While our work confirms that female mating synchrony sets an upper limit to monopolization by high-ranking individuals, other factors are also important. Coalitionary activity was the main tactic used by males to lower mating skew in the study group. Coalitions were expressed in a strongly age-related fashion and allowed subordinate, post-prime males to increase their mating success by targeting more dominant, prime males. Conversely, females, while mating promiscuously with several males during a given mating cycle, were more likely to initiate their consortships with prime males, thus reducing the overall effectiveness of coalitions. We conclude that high-ranking Barbary macaque males have a limited ability to monopolize mating access, leading to a modest mating skew among them.  相似文献   

14.
Summary Paternity determination by oligonucleotide fingerprinting confirms that maternal rank affects the reproductive success of male Barbary macaques (Macaca sylvanus). High-born males began to reproduce significantly earlier and sired significantly more infants surviving to at least 1 year of age during the first 4 years of their reproductive career than low-born males. This relation was independent of the natal/non-natal status of the males, and was not affected by external conditions such as the level of intrasexual competition or the number of fertilizable females. Since high-ranking females in this population produced significantly more male offspring than low-ranking females, the data on sex ratio adjustment and comparative breeding success of sons and daughters are consistent with the predictions of the Trivers-Willard hypothesis. Offprint requests to: A. Paul  相似文献   

15.
In mammals with solitary females, the potential for males to monopolize matings is relatively low, and scramble competition polygyny is presumed to be the predominant mating system. However, combinations of male traits and mating tactics within this type of polygyny have been described. The main aim of our study was to identify the relative importance of, and interactions among, potential determinants of contrasting male reproductive tactics, and to determine their consequences for male reproductive success in a small solitary nocturnal Malagasy primate, the gray mouse lemur (Microcebus murinus). We studied their mating behavior over three consecutive annual mating seasons. In addition, we determined the genetic relationships among more than 300 study animals to quantify the reproductive success of individual males. We found that, with a given relatively low overall monopolization potential, successful male mouse lemurs roamed extensively in search of mates, had superior finding ability and mated as early as possible. However, contest competition was important too, as temporary monopolization was also possible. Males exhibited different mating tactics, and heavier males had a higher reproductive success, although most litters had mixed paternities. Switching between tactics depended on short-term local variation in monopolization potential determined by a pronounced dynamic in fertilization probability, number of alternative mating opportunities, and the operational sex ratio. This study also revealed that the dynamics of these determinants, as well as the mutual interactions between them, necessitate a detailed knowledge of the mating behavior of a species to infer the impact of determinants of alternative mating tactics.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by S. AlbertsThis revised version was published online in August 2004 with corrections to Figure 2.  相似文献   

16.
The fitness consequences of dispersal decisions are difficult to quantify, especially for long-lived species with complex social systems. To calculate those consequences for male mountain gorillas, from the perspective of both subordinate and dominant males, we used behavioral and demographic data obtained over 30 years from the Virunga Volcano population to develop an agent-based model that simulates the life history events, social structure, and population dynamics of the species. The model included variables for birth rates, mortality rates, dispersal patterns, and reproductive skew. The model predicted an average lifetime reproductive success (LRS) of 3.2 for philopatric males (followers) and 1.6 for emigrants. The benefits of philopatry were most sensitive to opportunities for social queuing and to female transfer preferences, but philopatry remained the best strategy over a wide range of group conditions and hypothetical simulations. The average LRS for dominant males was 4.5 when a subordinate stayed and 4.6 when the subordinate emigrated. The dispersal decision of the subordinate male had little impact on the fitness of the dominant male because it came relatively late in the dominant males reproductive life span, and it changed his group composition only incrementally. The fitness consequences for the dominant male were most sensitive to the degree of reproductive skew. Since subordinates suffer a fitness loss when they leave a group, they should accept whatever reproductive restraint is needed to avoid eviction, and the dominant male does not need to offer concessions for them to stay. The dominant male may offer reproductive concessions for other reasons, such as peace incentives or to confuse paternity, or he may not have complete control of reproduction within his group.Communicated by D. Watts  相似文献   

17.
Tug-of-war over reproduction in a cooperatively breeding cichlid   总被引:1,自引:0,他引:1  
In group-living animals, dominants may suppress subordinate reproduction directly and indirectly, thereby skewing reproduction in their favour. In this study, we show experimentally that this ability (‘power’) is influenced by resource distribution and the body size difference between unrelated dominants and subordinates in the cichlid Neolamprologus pulcher. Reproduction was strongly skewed towards the dominant female, due to these females producing more and larger clutches and those clutches surviving egg eating better than those of subordinate females, but was not so when subordinates defended a patch. If breeding shelters were provided in two patches, subordinate females were more likely to exclusively defend a patch against the dominant female and breed, compared to when the same breeding resource was provided in one patch. Relatively large subordinate females were more likely to defend a patch and reproduce. Females also directly interfered with each other’s reproduction by eating the competitors’ eggs, at which dominants were more successful. Although dominant females benefited from subordinate females due to alloparental care and an increase in egg mass, they also showed costs due to reduced growth in the presence of subordinates. The results support the view that the dominant’s power to control subordinate reproduction determines reproductive partitioning, in agreement with the predictions from tug-of-war models of reproductive skew.  相似文献   

18.
Guira cuckoos, Guira guira, exhibit a rare polygynandrous reproductive system with groups containing several male and female breeders, allowing for important tests of reproductive skew models. Female reproductive strategies involve leaving the group, varying clutch size, egg ejection and infanticide, among others. Here we examined the predictions of reproductive skew models relative to reproductive partitioning among females in groups. We used yolk protein electrophoresis to identify individual females eggs in joint nests. We found that reproductive partitioning favors early-laying females, which lay and incubate more eggs than females that begin laying later. Because the female that lays first tends to switch between repeated nesting bouts, and females do not always contribute eggs to each bout, female reproductive success tends to equalize within groups over time. The pattern of reproductive partitioning differs from that described for anis, another crotophagine joint-nester. We calculated reproductive skew indices for groups in 2 years, for both laying and incubation, as well as an overall population value. These were compared to random skew generated by simulations. Varying degrees of skew were found for different groups, and also across sequential nesting bouts of the same groups. Overall, however, skew did not deviate from random within the population. Nests that reached incubation tended to have lower skew values during the laying phase than nests terminated due to ejection of all eggs followed by desertion. Groups had higher reproductive skew indices in their first nesting bout of the season, and these nests frequently failed. These results illustrate the importance of social organization in determining not only individual, but group success in reproduction, and highlight the flexibility of vertebrate social behavior.Communicated by J. Dickinson  相似文献   

19.
For polygynous mammals with no paternal care, the number of offspring sired is often the sole measure of male reproductive success. The potential for polygyny is highest when resources or other environmental factors such as restricted breeding sites force females to aggregate. In these circumstances, males compete intensely for females and mating success may vary greatly among males, further intensifying selection for those traits that confer an advantage in reproduction. Hence, determinants of male success in competition for females are likely to be under strong sexual selection. Paternity analysis was used in conjunction with measures of age, site fidelity, and behavior during the breeding season to assess variance in male breeding success in Weddell seals (Leptonychotes weddellii) breeding at Turtle Rock, McMurdo Sound (77.727S, 166.85E) between 1997 and 2000. Paternity could be assigned to 177 pups at relaxed or 80% confidence level or 111 pups at strict or 95% confidence levels. Weddell seals at Turtle Rock show a modest degree of polygyny with the greatest number of pups sired by any individual male in a single season equalling 5 or ∼10% of the pups born. Over four consecutive years, most (89.2%) males sired at least one pup. In a generalized linear model (GLM), age and the age first seen at the study site as an adult were unrelated to mating success, but adult experience, either site-specific or elsewhere in McMurdo Sound, over the reproductive life span of males explained nearly 40% of variance in total mating success with 80% confidence and 24% of variance at 95% confidence. While learning where females are likely to be may enhance male reproductive success, aquatic mating reduces the ability of males to monopolize females, and thereby increases equity in mating success.  相似文献   

20.
The operational sex ratio (OSR) may influence the intensity of competition for mates and mate choice and is therefore thought to be a major factor predicting the intensity and direction of sexual selection. We studied the opportunity for sexual selection, i.e., the variance in male reproductive success and the direction and intensity of sexual selection on male body mass in bank vole (Clethrionomys glareolus) enclosure populations with experimentally manipulated sex ratios. The opportunity for sexual selection was high among male-biased OSRs and decreased towards female-biased OSRs. Paradoxically, selection for large male body mass was strongest in female-biased OSRs and also considerable at intermediate OSRs, whereas at male-biased OSRs, only a weak relationship between male size and reproductive success was found. Litters in male-biased OSRs were more likely to be sired by multiple males than litters in female-biased OSRs. Our results suggest that the intensity and direction of sexual selection in males differs among different OSRs. Although the direction of sexual selection on male body mass was opposite than predicted, large body mass can be favored by sexual selection. Naturally varying OSRs may therefore contribute to maintain variation in male sexually selected traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号