首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Processes of deforestation, known to threaten tropical forest biodiversity, have not yet been studied sufficiently in East Africa. To shed light on the patterns and causes of human influences on protected forest ecosystems, comparisons of different study areas regarding land cover dynamics and potential drivers are needed. We analyze the development of land cover since the early 1970s for three protected East African rainforests and their surrounding farmlands and assess the relationship between the observed changes in the context of the protection status of the forests. Processing of Landsat satellite imagery of eight or seven time steps in regular intervals results in 12 land cover classes for the Kakamega–Nandi forests (Kenya) and Budongo Forest (Uganda) whereas ten are distinguished for Mabira Forest (Uganda). The overall classification accuracy assessed for the year 2001 or 2003 is similarly high for all three study areas (81% to 85%). The time series reveal that, despite their protection status, Kakamega–Nandi forests and Mabira Forest experienced major forest decrease, the first a continuous forest loss of 31% between 1972/1973 and 2001, the latter an abrupt loss of 24% in the late 1970s/early 1980s. For both forests, the temporally dense time series show short-term fluctuations in forest classes (e.g., areas of forest regrowth since the 1980s or exotic secondary bushland species from the 1990s onwards). Although selectively logged, Budongo Forest shows a much more stable forest cover extent. A visual overlay with population distribution for all three regions clearly indicates a relationship between forest loss and areas of high population density, suggesting population pressure as a main driver of deforestation. The revealed forest losses due to local and commercial exploitation further demonstrate that weak management impedes effective forest protection in East Africa.  相似文献   

2.
MAPPING TROPICAL DEFORESTATION IN CENTRAL AFRICA   总被引:3,自引:0,他引:3  
The NASA Landsat Pathfinder Humid Tropical Deforestation Project was to map deforestation activities in the humid tropics using datasets from both the Landsat TM (Thematic Mapper) and MSS (Multispectral Scanner System). In Central Africa, its effort had been constrained by the availability of cloud-free satellite coverage, especially for the 1970s Landsat MSS imagery. Here, we reported the deforestation rate and its spatial variability in the region using 18 pairs of co-registered Landsat TM imagery from the 1980s to 1990s. Of the total classified area of 416000 km, there were approximately 217000 km2 of dense forest and 24000 km2 of degraded forest in the 1980s. A total of 1012 km2 of forest, including 542 km2 of dense forest and 470 km2 of degraded forest, were cleared annually with an annual deforestation rate of 0.42%, varying among scenes ranging from 0.03 to 2.72%. Additionally, an average of 0.12% (ranging from 0.01 to 0.77% among scenes) or 257 km2 of dense forest was degraded annually. Regression analyses indicated that extensive deforestation occurred in areas with larger forest cover, including dense and degraded forests. Image interpretation also confirmed the hypothesized relationship between deforestation and forest accessibility. The annual clearance of the dense forest was significantly related to the rural population density, and there was a positive relationship between the dense forest degraded during the 1980s–1990s and the degraded forest area in the 1980s.  相似文献   

3.
Pingbian Miao Autonomous County is one of the poorest rural areas in China. Land-use changes, mainly driven by agricultural expansion and deforestation, may significantly impact ecosystem services and functions, but such effects are difficult to quantify. In the present study, Landsat image data were combined with the published coefficients about the world and China ecosystem to quantify land-use and ecosystem service changes in the mountainous area. A sensitivity analysis was employed to determine the effect of manipulating these coefficients on the estimated values. Our results show that during the past decades (from 1973 to 2004) forests and grasslands were converted into shrubland and cropland, respectively, resulting in a continuous decrease in ecosystem service (from 124.5 US$ × 106 in 1973 to 100.4 US$ × 106 in 2004). We found that the decrease of mixed forest in the study area was the largest contributor (i.e., 25.4 US$ × 106) to the decline of the ecosystem service. Therefore we propose that future land-use policy should pay more attention to the crucial ecosystem functions of these forests (including tropical forest), and that it is necessary to balance the relationship between the livelihood of local farmers and environmental protection in order to maintain a healthy and stable ecosystem.  相似文献   

4.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

5.
The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.  相似文献   

6.
The Three-North Shelter Forest Program is the largest afforestation reconstruction project in the world. Remote sensing is a crucial tool to map land use and land cover change, but it is still challenging to accurately quantify the change in forest extent from time-series satellite images. In this paper, 30 Landsat MSS/TM/ETM+ epochs from 1974 to 2012 were collected, and the high-quality ground surface reflectance (GSR) time-series images were processed by integrating the 6S atmosphere transfer model and a relative reflectance normalization algorithm. Subsequently, we developed a vegetation change tracking method to reconstruct the forest change history (afforestation and deforestation) from the time-series Landsat GSR images based on the integrated forest z-score (IFZ) model by Huang et al. (2009a), which was improved by multi-phenological IFZ models and the smoothing processing of IFZ data for afforestation mapping. The mapping result showed a large increase in the extent of forest, from 380,394 ha (14.8 % of total district area) in 1974 to 1,128,380 ha (43.9 %) in 2010. Finally, the land cover and forest change map was validated with an overall accuracy of 89.1 % and a kappa coefficient of 0.858. The forest change time was also successfully retrieved, with 22.2 % and 86.5 % of the change pixels attributed to the correct epoch and within three epochs, respectively. The results confirmed a great achievement of the ecological revegetation projects in Yulin district over the last 40 years and also illustrated the potential of the time-series of Landsat images for detecting forest changes and estimating tree age for the artificial forest in a semi-arid zone strongly influenced by human activities.  相似文献   

7.
Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.  相似文献   

8.
The rapid industrialization and urbanization of an area require quick preparation of actual land use/land cover (LU/LC) maps in order to detect and avoid overuse and damage of the landscape beyond sustainable development limits. Remote sensing technology fits well for long-term monitoring and assessment of such effects. The aim of this study was to analyze LU/LC changes between 1980 and 1999 in Samsun, Turkey, using satellite images. Three Landsat images from 1980, 1987 and 1999 were used to determine changes. A post classification technique was used based on a hybrid classification approach (unsupervised and supervised). Images were classified into six LU/LC types; urban, agriculture, dense forest, open forest-hazelnut, barren land and water area. It is found that significant changes in land cover occurred over the study period. The results showed an increase in urban, open forest/hazelnut, barren land and water area and a decrease in agriculture and dense forest in between 1980 and 1999. In this period, urban land increased from 0.77% to 2.47% of the total area, primarily due to conversions from agricultural land and forest to a lesser degree. While the area of dense forest decreased from 41.09% to 29.64% of the total area, the area of open forest and hazelnut increased from 6.73% to 11.88%.  相似文献   

9.
Land management decisions have extensively modified land use and land cover in the Zambezi Region. These decisions are influenced by land tenure classifications, legislation, and livelihoods. Land use and land cover change is an important indicator for quantifying the effectiveness of different land management strategies. However, there has been no evidence on whether protected or communal land tenure is more affected by land use and land cover changes in southern Africa and particularly Namibia. Our study attempted to fill this gap by analyzing the relationship between land use and land cover change and land tenure regimes stratified according to protected and communal area in the Zambezi Region. Multi-temporal Landsat TM and ETM+ imagery were used to determine the temporal dynamics of land use and land cover change from 1984 to 2010. The landscape showed distinctive modifications over the study period; broad trends include the increase in forest land after 1991. However, changes were not uniform across the study areas. Two landscape development stages were deduced: (1) 1984–1991 represented high deforestation and gradual increase in shrub land; (2) 1991–2000 and 2000–2010 represented lower deforestation and slower agropastoral expansion. The results further show clear patterns of the dynamics, magnitude, and direction of land use and land cover change by tenure regime. The study concluded that land tenure has a direct impact on land use and land cover, since it may restrict some activities carried out on the land in the Zambezi Region.  相似文献   

10.
The Mid-eastern Inner Mongolia of China, a typical agro-pastoral transitional zone, has undergone rapid agricultural land use changes including land reclamation and cropland abandonment in past decades due to growing population and food demand, climatic variability, and land use policy such as the "Grain for Green" Project (GFG Project). It is significant to the regional ecology and sustainability to examine the pattern and its rationality of land use change. The processes of land reclamation and cropland abandonment were accessed by using land use change dataset for four periods of 1990, 1995, 2000, and 2005, derived from the interpretation of Landsat TM images. And then the rationality of land reclamation and cropland abandonment was analyzed based on the habitat suitability for cultivation. The results indicated that: (1) land reclamation was the dominant form of agricultural land use change from 1990 to 2005, the total cropland area increased from 64,954.64 km(2) in 1990 to 76,258.51 km(2) in 2005; However, the speed of land reclamation decreased while cropland abandonment increased around 2000. The Land Reclamation Degree decreased from 1995-2000 to 2000-2005, meanwhile, Cropland Abandonment Degree increased. (2) As for the habitat suitability levels, moderately and marginally suitable levels had largest areas where cropland was widespread. Pattern of agricultural land use trended to become more rational due to the decrease of land reclamation area in low suitable levels and the increase of cropland abandonment in unsuitable area after 2000. (3) The habitat suitability-based rationality analysis of agricultural land use implicated that the GFG Project should take cultivation habitat suitability assessment into account.  相似文献   

11.
Today, as a result of erratic and unplanned urbanization, towns are rapidly becoming a mass of concrete and town-dwellers are suffocated by their busy and stressful professional lives. They feel a need for places where they can find breathing-space in their free time. Green areas within towns are important spaces where townspeople are able to carry out recreational activities. These places form a link between townspeople and nature. The importance of urban green areas is increasing with every passing day due to their social, psychological, ecological, physical and economic functions and their impact on the quality of towns. In this study it has been attempted to demonstrate the pressures of urban development on agricultural land by determining the changing land use situation over the years in the district of Akhisar. In this research, an aerial photograph from year 1939 and satellite images of the town from the years 2000 and 2007 were used. Land use changes in the region were determined spatially. As a result of this study, which aims to determine in which direction urbanization is progressing in the district, the importance of town planning emerges. This study will be informative for the local authorities in their future town planning projects. With its flat and almost flat fertile arable land, the district of Akhisar occupies an important position within the province of Manisa. From the point of view of olive production the region is one of Turkey's important centres. Fifty-five percent of the olive production in the province of Manisa is realized in Akhisar. However, the results of the present study show that while agricultural areas comprised 2.5805 km(2) in 1939, these had diminished to 1.5146 km(2) in the year 2000 and had diminished to 1.0762 km(2) in the year 2007 and residential area (dense) 0.449 km(2) occupied in 1939, in the year 2000 this had risen to 1.9472 and 2.3238 km(2) in the year 2007. This planless urbanization in the study area has led to great losses of farmland.  相似文献   

12.
Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.  相似文献   

13.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

14.
Shifts in biological communities are occurring at rapid rates as human activities induced global climate change increases. Understanding the effects of the change on biodiversity is important to reduce loss of biodiversity and mass extinction, and to insure the long-term persistence of natural resources and natures’ services. Especially in remote landscapes of developing countries, precise knowledge about on-going processes is scarce. Here we apply satellite imagery to assess spatio-temporal land use and land cover change (LULCC) in the Bale Mountains for a period of four decades. This study aims to identify the main drivers of change in vegetation patterns and to discuss the implications of LULCC on spatial arrangements and trajectories of floral communities. Remote sensing data acquired from Landsat MSS, Landsat ETM + and SPOT for four time steps (1973, 1987, 2000, and 2008) were analyzed using 11 LULC units defined based on the dominant plant taxa and cover types of the habitat. Change detection matrices revealed that over the last 40?years, the area has changed from a quite natural to a more cultural landscape. Within a representative subset of the study area (7,957.5?km?2), agricultural fields have increased from 1.71% to 9.34% of the total study area since 1973. Natural habitats such as upper montane forest, afroalpine grasslands, afromontane dwarf shrubs and herbaceous formations, and water bodies also increased. Conversely, afromontane grasslands have decreased in size by more than half (going from 19.3% to 8.77%). Closed Erica forest also shrank from 15.0% to 12.37%, and isolated Erica shrubs have decreased from 6.86% to 5.55%, and afroalpine dwarf shrubs and herbaceous formations reduced from 5.2% to 1.56%. Despite fluctuations the afromontane rainforest (Harenna forest), located south of the Bale Mountains, has remained relatively stable. In conclusion this study documents a rapid and ecosystem-specific change of this biodiversity hotspot due to intensified human activities (e.g., deforestation, agriculture, infrastructure expansion). Specifically, the ecotone between the afromontane and the afroalpine area represent a “hotspot of biodiversity loss” today. Taking into consideration the projections of regional climate warming and modified precipitation regimes, LULCC can be expected to become even more intensive in the near future. This is likely to impose unprecedented pressures on the largely endemic biota of the area.  相似文献   

15.
Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.  相似文献   

16.
Estimation of late twentieth century land-cover change in California   总被引:1,自引:0,他引:1  
We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973?C2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state??s land cover by 2000.  相似文献   

17.
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924–1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km2 (52.5 %), 56,661.1 km2 (36.4 %), 51,642.3 km2 (33.2 %), 49,773 km2 (32 %) and 48,669.4 km2 (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 %?year?1 during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km2) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.  相似文献   

18.
Istanbul is the most populated city of Turkey with a population of around 10.58 M (2000) living on around 5,750 km2. In 1980, the population was only 4.7 M and then it has been more than doubled in only two decades. The population has been increasing as a result of mass immigration. An urbanization process continues and it causes serious increases in urban areas while decreasing the amount of green areas. This rapid, uncontrolled, and illegal urbanization accompanied by insufficient infrastructure has caused degradation of forest and barren lands in the metropolitan area, especially through the last two decades. The watershed basins inside the metropolitan area and the transportation network have accelerated the land-cover changes, which have negative impacts on water quality of the basins. Monitoring urban growth and land cover change will enable better management of this complex urban area by the Greater Istanbul Metropolitan Municipality (GIMM). A temporal assessment of land-cover changes of Istanbul has been documented in this study. The study mainly focuses on the acquisition and analysis of Landsat TM and Landsat GeoCover LC satellite images reflecting the significant land-cover changes between the years of 1990 and 2005. Raster data were converted to vector data and used in Geographic Information Systems (GIS). A database was created for Istanbul metropolitan area to plan, manage, and utilize statistical attribute data covering population, water, forest, industry, and topographic position. Consequently an overlay analysis was carried out and land use/cover changes through years have been detected for the case study area. The capability of Landsat images in determining the alterations in the macro form of the city are also discussed.  相似文献   

19.
The desertification risk affects around 40% of the agricultural land in various regions of Romania. The purpose of this study is to analyse the risk of desertification in the south-west of Romania in the period 19842011 using the change vector analysis (CVA) technique and Landsat thematic mapper (TM) satellite images. CVA was applied to combinations of normalised difference vegetation index (NDVI)-albedo, NDVI-bare soil index (BI) and tasselled cap greenness (TCG)-tasselled cap brightness (TCB). The combination NDVI-albedo proved to be the best in assessing the desertification risk, with an overall accuracy of 87.67%, identifying a desertification risk on 25.16% of the studied period. The classification of the maps was performed for the following classes: desertification risk, re-growing and persistence. Four degrees of desertification risk and re-growing were used: low, medium, high and extreme. Using the combination NDVI-albedo, 0.53% of the analysed surface was assessed as having an extreme degree of desertification risk, 3.93% a high degree, 8.72% a medium degree and 11.98% a low degree. The driving forces behind the risk of desertification are both anthropogenic and climatic causes. The anthropogenic causes include the destruction of the irrigation system, deforestation, the destruction of the forest shelterbelts, the fragmentation of agricultural land and its inefficient management. Climatic causes refer to increase of temperatures, frequent and prolonged droughts and decline of the amount of precipitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号