首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of a series of studies concerning the relationship between the higher-order structure and the biodegradability of a biodegradable plastic, the effects of the crystal structure of the plastic on microbial degradation were investigated. Bacterial poly(d-(–)-3-hydroxybutyrate) (PHB) films which had a wide range of crystallinity were prepared by the melt-quenching method. Results of the microbial degradation indicated that the development of crystallinity evidently depressed the microbial degradability. From scanning electron microscopy (SEM) observations, it is suggested that the microbial degradation proceeded in at least two manners. One was preferential degradation of the amorphous region leaving the crystalline lamellae intact, which was considered to be a homogeneous enzymatic degradation over the surface. The other was nonpreferential spherical degradation on the surface. The SEMs indicate that the spherical holes were the result of colonization by degrading bacteria. The holes varied in size and number with the change of crystal structure. Therefore, it is considered that the crystal structure of PHB also influenced the physiological behavior of the degrading bacteria on the PHB surface.  相似文献   

2.
Residual cellulose acetate (CA) films with initial degree of substitution (DS) values of 1.7 and 2.5 (CA DS-1.7 and DS-2.5) were recovered from a simulated thermophilic compost exposure and characterized by gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) to determine changes in polymer molecular weight and DS and to study microbial colonization and surface morphology, respectively. During the aerobic degradation of CA DS-1.7 and CA DS-2.5 films exposed for 7 and 18 days, respectively, the number-average molecular weight (M n) of residual polymer decreased by 30.4% on day 5 and 20.3% on day 16, respectively. Furthermore, a decrease in the degree of substitution from 1.69 to 1.27 (4-day exposure) and from 2.51 to 2.18 (12-day exposure) was observed for the respective CA samples. In contrast, CA films (DS-1.7 and DS-2.5) which were exposed to abiotic control vessels for identical time periods showed no significant changes inM n and DS. SEM photographs of CA (DS-1.7 and DS-2.5) film surfaces after compost exposures revealed severe erosion and corresponding microbial colonization. Similar exposure times for CA films in abiotic control vessels resulted in only minor changes in surface characteristics by SEM observations. The conversion of CA DS-1.7 and DS-2.5 to CO2 was monitored by respirometry. In these studies, powdered CA was placed in a predigested compost matrix which was maintained at 53°C and 60% moisture content throughout the incubation period. A lag phase of 10- and 25-day duration for CA DS-1.7 and DS-2.5, respectively, was observed, after which the rate of degradation increased rapidly. Mineralization of exposed CA DS-1.7 and DS-2.5 powders reported as the percentage theoretical CO2 recovered reached 72.4 and 77.6% in 24 and 60 days, respectively. The results of this study demonstrated that microbial degradation of CA films exposed to aerobic thermophilic laboratory-scale compost reactors not only results in film weight loss but also causes severe film pitting and a corresponding decrease in chainM n and degree of substitution for the residual material. Furthermore, conversions to greater than 70% of the theoretical recovered CO2 for CA (DS 1.7 and 2.5) substrates indicate high degrees of CA mineralization.Guest Editor: Dr. Graham Swift, Rohm & Haas.  相似文献   

3.
Azotobacter vinelandii UWD, ATCC 53799, an engineered strain derived from Azotobacter vinelandii UW was used in the poly(ethylene glycol) (PEG)-modulated synthesis of poly(-hydroxybutyrate) (PHB). To the best of our knowledge, this is the first report on modulating the production of PHB by amending the fermentation broth with PEG using A. vinelandii UWD. It was determined that A. vinelandii UWD is prone to back-mutation to the parent strain; hence fermentation experiments require the use of the antibiotic rifampicin. Diethylene glycol (DEG) and PEGs with molecular weights of 400, 2000, and 3400 Da and pentaerythritol ethoxylate (PEE) were used in the modulated fermentation experiments in a concentration of 2% (w/v). The molecular weight of the resulting polymers was reduced by up to 78%. No impact on the productivity of the strain was observed. Spectroscopic evidence showed that PEG-modulated synthesis resulted in the covalent attachment of the ethylene glycol moiety only when a small molecule, DEG, was used. PEGs had the same effects on the polymer formation in terms of molecular weight reduction as DEG, but no spectroscopic evidence was found for the formation of a covalent linkage between PHB and higher molecular weight PEGs.  相似文献   

4.
The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.  相似文献   

5.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

6.
An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase was purified fromAureobacterium saperdae cultural medium by using hydrophobic interaction chromatography. The isolated enzyme was composed of a single polypeptide chain with a molecular mass of 42.7 kDa as determined by SDS-PAGE and by native gel filtration on TSK-HW-55S. The enzyme was not a glycoprotein. Its optimum activity occurred at pH 8.0 and it showed a broad pH stability, ranging from pH 3 to pH 11.N-Bromosuccinamide and 2-hydroxy-5-nitrobenzyl bromide completely inactivated the enzyme, suggesting the involvement of tryptophan residues at the active site of the protein. The enzyme was very sensitive to diisopropyl fluorophosphate and diazo-dl-norleucine methyl ester, showing the importance of serine and carboxyl groups. The modification of cysteine residues byp-hydroxy mercuricbenzoate did not cause a loss of activity, whereas dithiothreitol rapidly inactivated the enzyme, revealing the presence of disulfide bonds.A saperdae depolymerase acted on the surface layer of PHB films and the degradation proceeded by surface erosion releasing monomers and dimers of 3-hydroxybutric acid. The degradation of PHB films byA. saperdae depolymerase was partially inhibited in the presence of excess amounts of enzyme. This phenomenon, already observed by Mukaiet al. with poly(hydroxyalkanoates) depolymerases fromAlcaligenes faecalis, Pseudomonas pickettii, andComamonas testosteroni, was analyzed according to the kinetic model proposed by these authors. The experimental data evidenced a general agreement with the kinetic model, although higher initial degradation rates were found withA. saperdae depolymerase.  相似文献   

7.
宜慧  常波  杨玲引  侯丽芳 《化工环保》2018,38(4):461-465
从陕北原油污染土壤中筛选出7株高效石油烃降解菌,其中黄杆菌属CC-2、不动细菌属SC-5、假单胞菌属SC-6表现出较强的石油烃降解能力。通过单因素试验和正交试验考察总石油烃(TPH)降解效果的影响因素,得出各因素对TPH降解率影响程度的大小次序为:溶液p H降解温度降解菌接种量摇床转速,且在降解菌接种量为7%(φ)、溶液p H为7、降解温度为30℃、摇床转速为150 r/min的最适处理条件下,菌株SC-6的TPH降解率可达61.23%。原油污染土壤生物修复实验结果表明:高效石油烃降解菌的投加有利于土壤TPH降解率和酶活性的提高;"菌株SC-6+营养剂"组修复处理42 d后的TPH降解率可达57.59%。  相似文献   

8.
An electrochemical impedance spectroscopy (EIS) technique was evaluated for monitoring microbial degradation of electronic packaging polyimides. The microbial inoculum was a mixed culture of fungi isolated previously from deteriorated polyimides. The active fungal consortium comprised Aspergillus versicolor, Cladosporium cladosporioides, and a Chaetomium species. After inoculation, fungal growth on the polyimides resulted in distinctive EIS spectra indicative of polymer insulation failure, which directly related to polymer integrity. Degradation appeared to occur in a number of steps and two distinctive stages in the decline of film resistance were observed in the inoculated EIS cells within the 2 and 10 weeks after inoculation. The early stage of resistance decrease may be related to the ingress of water molecules and ionic species into the polymeric materials, whereas the second stage probably resulted from partial degradation of the polymers by fungal growth on the polymer film. The relationship between changes of impedance spectra and microbial degradation of the polymer was further supported by scanning electron microscopy (SEM) observations of fungi growing on the surface of the inoculated polyimides. Our data indicate that the EIS can be used in detection of early degradation of resistant polymers and polyimides that are susceptible to biodeterioration.  相似文献   

9.
The distribution of degading microorganisms of high molecular weight poly(-propiolactone) (PPL), whose individual structural units are similar to those of poly(-hydroxybutyrate) (PHB) and poly(€-caprolactone) (PCL), was examined. Despite the fact that PPL is a chemosynthetic polymer, many kinds of PPL-degrading microorganisms were found to be distributed as resident populations widely in natural environments. A total of 77 strains of PPL-degrading microorganisms was isolated. From standard physiological and biochemical tests, at least 41 strains were referred to as Bacillus species. Microbial degradation of fibrous PPL proceeded rapidly in some enrichment cultures but was not as complete as that of PHB. Most of the isolated PPL-degrading microorganisms were determined to be PCL degraders and/or PHB degraders. Therefore, it can be assumed that mostly PPL is recognized by the microorganisms as PHB or another natural substrate of the same type as which PCL is regarded. Microbial degradation of PPL was confirmed by some Bacillus strains from type culture collections. The similarity of microbial degradation between PPL and PCL was found to be very close.  相似文献   

10.
The biodegradability of the edible films made of whey proteins by disulfide cross-linking was investigated. Whey protein concentrate (WPC) and whey protein isolate (WPI) films were subjected to microbial degradation using Pseudomonas aeruginosa and composting burial degradation. Results from the microbial degradation showed that whey protein films could support the growth of P. aeruginosa. The bacterial growth characteristics were well described using the Gompertz model. WPC films degraded faster than WPI films, suggesting that the biodegradability of protein films is associated with the film composition and the extent of covalent cross-linking. WPI films buried in a compost pile began to degrade in two days and became darker over time. More than 80% of total solids were lost in 7 days.  相似文献   

11.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   

12.
WhenPseudomonas oleovorans (GPo1) is grown on sodium octanoate under ammonium limiting conditions, it is able to accumulate a copolyester consisting of medium chain length 3-hydroxyalkanoic acids (PHAm). 3-Hydroxybutyrate is only incorporated in trace amounts. WhenP. oleovorans is equipped with the PHB biosynthetic genes ofAlcaligenes eutrophus (GPo1[pVK101::PP1]), it forms a polyester containing major amounts of 3-hydroxybutyrate. The resulting polymer however is a blend of PHAm and PHB, rather than a copolymer of 3-hydroxybutyrate and medium chain length 3-hydroxyalkanoic acids [11]. To establish whether PHAm and PHB molecules are stored in the same or separate granules by this recombinantP. oleovorans strain, we studied polymer forming cells by freeze-fracture electron microscopy. This approach is possible because previous freeze-fracture electron microscopy studies on PHAm and PHB accumulating strains have shown that PHAm and PHB granules can be distinguished from each other: PHAm granules from mushroom-like structures, whereas PHB granules from needle structures during freeze-fracturing. In this paper we show that stationary phase cells of GPo1[pVK101::PP1] contained both mushroom and needle-like structures, indicating that PHAm and PHB chains were stored in separate granules. To be able to determine whether the separation of PHAm and PHB is complete, the respective granules were separated on sucrose gradients. A total cell extract of GPo1[pVK101::PP1] which was subjected to sucrose gradient centrifugation revealed two white bands of different densities: the upper band with a density of 1.05 g/mL consisted exclusively of PHAm granules, while the lower band with a density of 1.19 g/mL consisted of PHB granules only. Thus, when bacteria synthesize both PHAm and PHB, the resulting polymer chains are segregated completely and stored in separate granules.  相似文献   

13.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

14.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

15.
Biodegradation is an attractive approach for the elimination of synthetic polymers, pervasively accumulated in natural environments and generating ecological problems. The present work investigated the degradation of low‐density polyethylene (PE) by three Bacillus sp., that is, ISJ36, ISJ38, and ISJ40. The degree of biodegradation was assessed by measuring hydrophobicity, viability, and total protein content of bacterial biofilm attached to the PE surface. Although all three bacterial strains were able to establish an active biofilm community on the PE surface, ISJ40 showed better affinity toward PE degradation than the other two. Bacterial colonization and physical changes on the PE surface were visualized by scanning electron microscopy. Fourier transform infrared spectroscopy analysis revealed alteration in the intensities of functional groups along with an increase in the carbonyl bond indexes. The study results suggest that the Bacillus strain ISJ40 can be used as a potential degrader for the eco‐friendly treatment of PE waste.  相似文献   

16.
A strain of Aspergillus fumigatus, which was observed to rapidly degrade poly-3-hydroxybutyrate (PHB) in a leaf compost, was found to secrete an extracellular hydrolase when grown on PHB as the sole carbon source. Isolation and characterization of the PHB hydrolase (depolymerase) from this fungus revealed that the enzyme had a molecular weight of 57 kDa, an isoelectric point of 7.2, and a PHB hydrolysis activity maxima which occurred at 70°C and pH 8.0. Affinity labeling experiments suggested that this fungal hydrolase is a type of serine esterase. The cyclic trimers of 3-hydroxybutyrate were found to reversibly inhibit the enzymes.  相似文献   

17.
A rubber-degrading strain of Nocardia was cultured on tread rubber particles from a truck tire by a two-step cultivation method. At the first step, the culture medium was either not agitated or stirred at very slow rate of 40 rpm for one or 2 weeks. At the second step, the culture medium was stirred at relatively higher stirring rate of 150 or 300 rpm for seven or six weeks. It was found that the rate of disintegration was greatly increased and the weight losses of the particles with diameters of about 2.3 mm were as high as 40% in the two-step method and only 20–30% in a one-step method in which the stirring rate was kept constant throughout the culture period. With this method, microbial colonization and disintegration were depressed particularly at the corners of the cubic particles and characteristic protuberant structures were observed at the corners after the removal of microbial cells by washing.  相似文献   

18.
As a complement to previous studies of the enzymatic degradation of folded chain lamellar single crystals of polyhydroxyalkanoates, single crystals of a number of polyhydroxyalkanoates were partially degraded with depolymerases from Pseudomonas lemoignei and examined by transmission electron microscopy. Single crystals of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate), bacterial poly(3-hydroxyvalerate), and synthetic poly(3-hydroxybutyrate) with 88% isotactic diads were degraded using purified extracellular PHA-depolymerases from P. lemoignei: PHB-depolymerase A, PHB-depolymerase B, and depolymerases from recombinant E. coli: PHB-depolymerase PhaZ4 (PHB-depolymerase E), PHB-depolymerase PhaZl (PHB-depolymerase C), and PHB-depolymerase PhaZ5 (PHB-depolymerase A). In contrast to previous results with single crystals of bacterial PHB, the predominant effect observed with all crystals was a significant narrowing of the lamellae. This suggests an edge attack mechanism which because of lateral disorder of the crystals leads to a narrowing of the crystalline lamellae as opposed to the splintering effect previously observed. The model suggested for the degradation of single crystals of bacterial PHB by PHB-depolymerases is refined to include the effects of lateral disorder caused by the introduction of valerate or repeat units of opposite stereochemistry into the single crystal.  相似文献   

19.
Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.  相似文献   

20.
Establishing carbon balances has been proven to be an applicable and powerful tool in testing biodegradability of polymers. In controlled degradation tests at a 4-L scale with the model polymer poly(-hydroxybutyrate) (PHB), it was shown that the degree of degradation could not be determined with satisfactory accuracy from CO2 release alone. Instead, the course of degradation was characterized by means of establishing carbon balances for the degradation of PHB withAcidovorax facilis and a mixed culture derived from compost. Different analytical methods for determining the different carbon fractions were adapted to the particular test conditions and compared. Quantitative determination of biomass and residual polymer were the main problems in establishing carbon balances. Amounts of biomass derived from protein measurements depend strongly on assumptions of the protein content of the biomass. Selective oxidation of biomass with hypochlorite was used as alternative, but here problems arose from insoluble metabolic products. Determination of soluble components with the method of chemical oxygen demand (COD) also includes empirical assumptions but seems acceptable if the dissolved carbon fraction is in the range of some 10% total carbon. Results confirm both analytical assays and theoretical approaches, in ending up at values very close to 100%, within an acceptable standard deviation range under test conditions comparable to standard test practice.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号