首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

2.
Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate   总被引:2,自引:0,他引:2  
The relationships between N fertilizer rate, yield, and NO3 leaching need to be quantified to develop soil and crop management practices that are economically and environmentally sustainable. From 1996 through 1999, we measured yield and NO3 loss from a subsurface drained field in central Iowa at three N fertilizer rates: a low (L) rate of 67 kg ha(-1) in 1996 and 57 kg ha(-1) in 1998, a medium (M) rate of 135 kg ha(-1) in 1996 and 114 kg ha(-1) in 1998, and a high (H) rate of 202 kg ha(-1) in 1996 and 172 kg ha(-1) in 1998. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown in rotation with N fertilizer applied in the spring to corn only. For the L treatment, NO3 concentrations in the drainage water exceeded the 10 mg N L(-1) maximum contaminant level (MCL) established by the USEPA for drinking water only during the years that corn was grown. For the M and H treatments, NO3 concentrations exceeded the MCL in all years, regardless of crop grown. For all years, the NO3 mass loss in tile drainage water from the H treatment (48 kg N ha(-1)) was significantly greater than the mass losses from the M (35 kg N ha(-1)) and L (29 kg N ha(-1)) treatments, which were not significantly different. The economically optimum N fertilizer rate for corn was between 67 and 135 kg ha(-1) in 1996 and 114 and 172 kg ha(-1) in 1998, but the net N mass balance indicated that N was being mined from the soil at these N fertilizer levels and that the system would not be sustainable.  相似文献   

3.
Livestock manure in feedlots releases ammonia (NH3), which can be sorbed by nearby soil and plants. Ammonia sorption by soil and its effects on soil and perennial grass N contents downwind from two large cattle feedlots in Alberta, Canada were investigated from June to October 2002. Atmospheric NH3 sorption was measured weekly by exposing air-dried soil at sampling points downwind along 1700-m transects. The amount of NH3 sorbed by soil was 2.60 to 3.16 kg N ha(-1) wk(-1) near the source, declining to about 0.25 kg N ha(-1) wk(-1) 1700 m downwind, reflecting diminishing atmospheric NH3 concentrations. Ammonia sorption at a control site away from NH3 sources was much lower: 0.085 kg N ha(-1) wk(-1). Based on these rates, about 19% of emitted NH3 is sorbed by soil within 1700 m downwind of feedlots. Field soil and grass samples from the transect lines were analyzed for total N (TN) and KCl-extractable N content (soil only). Nitrate N content in field soil followed a trend similar to that of atmospheric NH3 sorption. Soil TN contents, because of high background levels, showed no clear pattern. The TN content of grass, downwind of the newer feedlot, followed a pattern similar to that of NH3 sorption; downwind of the older feedlot, grass TN was correlated to soil TN. Our results suggest that atmospheric NH3 from livestock operations can contribute N to local soil and vegetation, and may need to be considered when determining fertilizer rates and assessing environmental impact.  相似文献   

4.
Manure use on cropland has raised concern about nutrient contamination of surface and ground waters. Warm-season perennial grasses may be useful in filter strips to trap manure nutrients and as biomass feedstock for nutrient removal. We explored the use of 'Alamo' switchgrass (Panicum virgatum L.) in a biomass production-filter strip system treated with dairy manure. We measured changes in extractable P in the soil, NO3 -N in soil water, and changes in total reactive P and chemical oxygen demand (COD) of runoff water before and after a switchgrass filter strip. Five rates of dairy manure (target rates of 0, 50, 100, 150, and 200 kg N ha(-1) from solid manure in 1995; 0, 75, 150, 300, and 600 kg N ha(-1) from lagoon effluent in 1996 and 1997) were surface-applied to field plots of switchgrass (5.2 by 16.4 m) with a 5.2- by 16.4-m switchgrass filter strip below the manured area. Yield of switchgrass from the manured area increased linearly with increasing manure rate in each year. Soil water samples collected at 46 or 91 cm below the soil surface on 30 dates indicated < 3 mg L(-1) of NO3-N in all plots. Concentrations of total reactive P in surface runoff water were reduced an average of 47% for the 150 kg N rate and 76% for the 600 kg N rate in 1996 and 1997 after passing through the strip. Manure could effectively substitute for inorganic fertilizer in switchgrass biomass production with dual use of the switchgrass as a vegetative filter strip.  相似文献   

5.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   

6.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

7.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   

8.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses.  相似文献   

9.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

10.
Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake.  相似文献   

11.
12.
The influence of increasing pig slurry applications on leaching and crop uptake of N and P by cereals was evaluated in a 3-yr study of lysimeters filled with a sandy soil. The slurry was applied at N rates of 50 (S50), 100 (S100), 150 (S150), and 200 (S200) kg ha(-1) during 2 of the 3 yr. The P rates applied with slurry were: 40 (S50), 80 (S100), 120 (S150), and 160 (S200) kg ha(-1) yr(-1). Simultaneously, NH4NO3 and Ca(H2PO4)2 were applied at rates of 100 kg N ha(-1) and 50 kg P ha(-1), respectively, to additional lysimeters (F100), while others were left unfertilized (F0). During the 3-yr period, the leaching load of total N tended to increase with increasing slurry application to, on average, 139 kg ha(-1) at the highest application rate (S200). The corresponding N leaching loads (kg ha(-1)) in the other treatments were: 75 (F0), 103 (F100), 93 (S50), 120 (S100), and 128 (S150). The loads of slurry-derived N in the S100, S150, and S200 treatments were significantly larger (P < 0.05) than those of fertilizer-derived N. In contrast, P leaching tended to decrease with increasing input of slurry, and it was lower in all treatments that received P at or above 50 kg P ha(-1) yr(-1) with slurry or fertilizer than in the unfertilized treatment. The crop use efficiency of added N and P was clearly higher when NH4NO3 and Ca(H2PO4)2 were used rather than slurry (60 vs. 35% for N, 38 vs. 6-9% for P), irrespective of slurry application rate. Therefore, from both a production and water quality point of view, inorganic fertilizers seem to have environmental benefits over pig slurry when used on sandy soils.  相似文献   

13.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   

14.
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.  相似文献   

15.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage.  相似文献   

16.
Cover crops are a management option to reduce NO3 leaching under cereal grain production. A 2-yr field lysimeter study was established in Uppsala, Sweden, to evaluate the effect of a perennial ryegrass (Lolium perenne L.) cover crop interseeded in barley (Hordeum vulgare L.) on NO3-N leaching and availability of N to the main crop. Barley and ryegrass or barley alone were seeded in mid-May 1992, in lysimeters (03-m diam. x 1.2-m depth) of an undisturbed, well-drained, sandy loam soil. Fertilizer N was applied at the same time as labeled l5NH415NO3 (10 atom % 15N) at a rate of 100 kg N ha(-1). In 1993, barley was reseeded in May in the lysimeters but with nonlabeled NH4NO3 and no cover crop (previous year's cover crop incorporated just prior to seeding). Barley yields and total and fertilizer N uptake in Year 1 (1992) were unaffected by cover crop. Total aboveground N uptake by the ryegrass was 28 kg ha(-1) at the time of incorporation the following spring. Recovery of fertilizer-derived N in May 1993 was about 100%; 53% in soil, 46% in barley, <2% in ryegrass, and negligible amounts in leachate. In May 1994, the corresponding figures were: 32% in soil, <3% in barley, and, again, negligible amounts in leachate. The cover crop reduced concentrations of NO3-N in the leachate considerably (<5 mg L(-1), compared with 10 to 18 mg L(-1) without cover crop) at most sampling times from November 1992 to April 1994, and reduced the total amount of NO3-N leached (22 compared with 8 kg ha(-1)).  相似文献   

17.
Monitoring of nitrate leaching in sandy soils: comparison of three methods   总被引:2,自引:0,他引:2  
Proper N fertilizer and irrigation management can reduce nitrate leaching while maintaining crop yield, which is critical to enhance the sustainability of vegetable production on soils with poor water and nutrient-holding capacities. This study evaluated different methods to measure nitrate leaching in mulched drip-irrigated zucchini, pepper, and tomato production systems. Fertigation rates were 145 and 217 kg N ha(-1) for zucchini; 192 and 288 kg N ha(-1) for pepper; and 208 and 312 kg N ha(-1) for tomato. Irrigation was either applied at a fixed daily rate or based on threshold values of soil moisture sensors placed in production beds. Ceramic suction cup lysimeters, subsurface drainage lysimeters and soil cores were used to access the interactive effects of N rate and irrigation management on N leaching. Irrigation treatments and N rate interaction effects on N leaching were significant for all crops. Applying N rates in excess of standard recommendations increased N leaching by 64, 59, and 32%, respectively, for pepper, tomato, and zucchini crops. Independent of the irrigation treatment or nitrogen rate, N leaching values measured from the ceramic cup lysimeter-based N leaching values were lower than the values from the drainage lysimeter and soil coring methods. However, overall nitrate concentration patterns were similar for all methods when the nitrate concentration and leached volume were relatively low.  相似文献   

18.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

19.
Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.  相似文献   

20.
Irrigated pastures are significant contributors of phosphorus (P) to inland watercourses, with much of the P coming from applied fertilizer. It was hypothesized that the timing of P fertilizer application relative to irrigation regulates P concentrations in runoff and infiltrating water. To test this hypothesis, a two-by-two factorial experiment was conducted on twelve 8- x 30-m border-irrigated bays growing perennial pasture. Phosphorus fertilizer in the form of single superphosphate (44 kg P ha(-1)) was surface-broadcast onto the bays when the nominal change in soil water deficit reached 0 or 50 mm (U.S. Class A pan evaporation minus rainfall). Following fertilizer application, the bays were again irrigated when the nominal soil water deficit between fertilizing and the subsequent irrigation reached either 0 or 50 mm. The volume of water applied, runoff volume, and changes in soil water content were recorded for the three irrigations following fertilizer application. Total phosphorus (TP) and filtrable reactive phosphorus (FRP, <0.45 microm) concentrations in runoff and at depths of 0.1, 0.3, and 0.6 m in the soil were also measured. Soil water content at fertilizer application had less effect on P concentrations in runoff and soil water than the additional time between fertilizing and irrigating. By allowing a deficit of 50 mm between fertilizer application and irrigation, the average concentration of P in runoff and moving below a soil depth of 0.1 m was approximately halved. To maximize fertilizer use efficiency and minimize environmental effects, a delay should occur between applying P fertilizer and irrigating perennial pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号