首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
在巢湖采集泥样进行加藻培养实验,监测培养过程中的藻剩余量、上覆水及间隙水氮和磷浓度、沉积物各胞外酶活性、亚铁和总铁含量及各形态磷含量等相关指标的变化。结果表明,随着培养时间的增加,藻剩余量下降,藻剩余量与时间的关系符合公式:y=2.301 1×e~(-0.054 6x)(R~2=0.898 1,P0.01)。与对照组相比,加藻组间隙水和上覆水氨氮(NH_4~+-N)浓度大幅度上升,说明巢湖蓝藻水华衰亡初期,藻类自身矿化及沉积物均大量释放NH_4~+-N。加藻培养后第4天开始,间隙水溶解反应性磷明显低于对照组相应值,主要是由于微生物已获得充足的碳源和氮源,为了提高微生物生产力需要与之匹配的磷含量而吸收间隙水中的磷。加入藻类碎屑培养后,沉积物碱性磷酸酶活性明显高于对照组相应值,说明藻类有机质和高浓度NH_4~+-N均可诱导微生物分泌碱性磷酸酶,但加藻组酸提取有机磷(磷酸酶的底物)的含量并未明显降低;整个培养过程中,加藻组氨肽酶活性均低于对照组相应值,说明高浓度氨对氨肽酶具有抑制作用。加藻培养后,沉积物脱氢酶活性和亚铁与总铁的比值均低于对照组相应值,但沉积物铁结合态磷(Fe(OOH)-P)含量明显高于对照组相应值。表明藻类碎屑分解过程中,沉积物Fe(OOH)-P厌氧释放的少,且藻类自身矿化产生的磷以Fe(OOH)-P的形式固定在沉积物中。  相似文献   

2.
研究了氯霉素对沉积物中细菌总教、碱性磷酸酶活性及沉积物呼吸作用的影响表明氯霉素对沉积物细莆总数的影响呈现显著的浓度效应,在低浓度时影响不大,但在高浓度时抑制作用很显著;氯霉素在高浓度下对碱性磷酸酶活性具有抑制作用,且随着药物浓度的增加和时间的延长抑制作用加大;氯霉素对沉积物呼吸作用强度的影响,表现为非持续性的影响,尤其对于低浓度氯霉素来说,随着降解或者抗性种群的增加,呼吸作用逐渐恢复正常.而高浓度氯霉素对呼吸作用的影响时间则要长一些,影响程度也更大一些.  相似文献   

3.
以从大庆油田采出水中筛选到的硫酸盐还原菌SRB-2和反硝化细菌DNB-1为目的菌,考察两者之间的竞争抑制关系,以及添加营养物质的种类和浓度对SRB-2数量及产H2S活性的影响。结果表明,当体系中硝酸盐浓度为0.5 g/L或亚硝酸盐浓度为0.1-0.5 g/L时,DNB-1就能够有效降低SRB-2活性,抑制H2S的产生,抑制时间10 d以上,H2S产生可以减少85%以上;当体系中硝酸盐浓度为0.1-0.25 g/L时,在10 d内DNB-1对SRB-2活性和产H2S活性也有较好的抑制效果,H2S产生减少65%左右;亚硝酸盐对SRB-2生长的抑制作用好于硝酸盐。  相似文献   

4.
二溴联苯醚对纤细裸藻的生态遗传毒性效应   总被引:6,自引:1,他引:5       下载免费PDF全文
通过检测纤细裸藻生长、抗氧化酶活性和单细胞凝胶电泳(彗星试验)研究了4,4’-二溴联苯醚(BDE-15)对纤细裸藻(Euglena gracilis)的生态遗传毒性效应.结果表明,低浓度BDE-15(3×10-6mg/L)对纤细裸藻的生长无显著影响,高浓度时(3mg/L)具有明显的抑制作用,相比空白抑制率达69.70%;叶绿素a和类胡萝卜素含量在高浓度BDE-15作用下显著上升;谷胱甘肽(GSH)和细胞总蛋白含量则随BDE-15浓度增加明显下降;抗氧化酶系统中超氧化物歧化酶(SOD)活性随BDE-15浓度升高显著下降,具明显的剂量-效应关系,过氧化物酶(POD)活性随BDE-15浓度增加呈上升趋势,最高浓度组(3mg/L)比空白对照提高93.45%,显示BDE-15胁迫可诱导抗氧化酶活性;彗星试验结果显示纤细裸藻细胞DNA损伤程度随BDE-15浓度增加而加重,表明高浓度BDE-15具有潜在致突变性.  相似文献   

5.
稻米和蔬菜是人体摄入的主要食物来源,由于人的活动造成了稻米和蔬菜中砷与硝酸盐超标。摄入的砷污染稻米与硝酸盐超标蔬菜会经过人体消化系统被胃肠道吸收并释放部分砷与硝酸盐产物,人体肠道对砷与硝酸盐具有一定的解毒作用,其中肠道微生物发挥着重要作用。从人类新鲜粪样中富集与分离出一株厌氧反硝化菌株CD14-2,通过比对与分析其16S rRNA序列,确定该菌株属于肠杆菌科埃希氏菌属(Escherichia),并对其硝酸盐还原酶基因(nitrate reductase, Nar)进行了同源性分析,进一步探究了菌株CD14-2在乳酸钠作为碳源下的反硝化速率和对不同碳源的利用情况以及菌株CD14-2与砷的相互作用。结果表明:反硝化菌株CD14-2能够在48 h内将10 mM硝酸盐氮还原为近9 mM亚硝酸盐氮,并能够利用多种碳源,在高砷浓度中生长且具有反硝化功能;当砷浓度不超过1 mM时,该菌株的反硝化功能基本未受影响,当砷浓度超过1 mM时,会对该菌株的反硝化能力起到抑制作用,且其抑制效果与砷浓度呈正相关关系。  相似文献   

6.
磷酸酶催化水解有机磷是水体生物有效磷的重要补充途径.以天鹅湖富营养化水体为研究对象,研究了磷和金属对水体中碱性磷酸酶的活性(APA)和动力学性质的影响.结果表明:磷酸根(PO_4~(3-))、六偏磷酸根((PO_3)_6~(-6))、焦磷酸根(P_2O_7~(4-))、β-甘油磷酸根((C_3H_4O_6P)~(2-))在0.01~1 mmol·L~(-1)范围内对APA表现为抑制作用,并且抑制作用随浓度的升高而增强:浓度为1 mmol·L~(-1)时,与对照相比,水体中APA分别降低50.8%、55.8%、52.4%和14.4%.金属Al~(3+)、Co~(2+)、Pb~(2+)和Cr~(6+)对APA的激活作用随浓度增大而增强,浓度为1 mmol·L~(-1)时,水体APA分别是空白的2.8、3.1、2.3和2.7倍.重金属Cu~(2+)、Zn~(2+)、Ni~(2+)对水体中碱性磷酸酶表现出抑制作用,3种重金属中Cu~(2+)抑制作用最显著.当Cu~(2+)浓度为1 mmol·L~(-1)时,碱性磷酸酶相对活性仅为空白的62.3%.随着Cu~(2+)、PO_4~(3-)、(PO_3)_6~(-6)、P_2O_7~(4-)浓度增大,碱性磷酸酶的最大反应速率Vmax保持基本稳定,米氏常数Km增大,因此,它们对碱性磷酸酶的抑制为竞争性抑制类型.同时,V_(max)/K_m值随Cu~(2+)、PO_4~(3-)、(PO_3)_6~(-6)、P_2O_7~(4-)、(C_3H_4O_6P)~(2-)浓度的增大而降低,催化效率降低,说明V_(max)/K_m可作为水体磷酸酶催化能力的有效指标.总体而言,含磷基团和金属离子会显著影响富营养化水体APA,将间接影响水体有机磷的转化和供磷效率.  相似文献   

7.
为了明确三氯生对土壤生态环境的安全性,以3种土壤酶为指标,采用室内培养试验,研究了不同浓度的三氯生对土壤脲酶、酸性磷酸酶和过氧化氢酶活性的影响。研究结果表明,不同浓度水平的三氯生对3种土壤酶活性的影响效果不同。低浓度(≤50 mg/kg)三氯生作用下,脲酶活性先降低后增加,最后恢复到对照水平,高浓度(100 mg/kg)三氯生胁迫下脲酶活性先降低后恢复最后又被抑制。而对酸性磷酸酶活性来说,三氯生在低浓度时(≤50 mg/kg)先刺激后抑制酶活性,最后磷酸酶活性恢复到对照水平,高浓度下(100 mg/kg)三氯生先抑制后刺激再抑制磷酸酶活性,最后磷酸酶活性恢复到对照水平。各浓度水平的三氯生在培养的初期(21 d)对土壤过氧化氢酶活性没有影响,随着培养时间延长(≥28 d),低浓度(≤50 mg/kg)三氯生刺激了酶活性,高浓度(100 mg/kg)的三氯生抑制了过氧化氢酶活性。总体来说,高浓度的三氯生对土壤环境存在不利影响。  相似文献   

8.
U及伴生重金属Mn、Pb对土壤酶活性的影响   总被引:1,自引:0,他引:1  
通过盆栽实验,研究不同浓度条件下U、Mn、Pb对土壤酶(脲酶、酸性磷酸酶、蔗糖酶和过氧化物酶)活性的影响。结果表明:U对四种酶均有抑制作用,其中脲酶、磷酸酶、蔗糖酶活性随着U浓度的增加而降低;Mn对脲酶、磷酸酶有抑制作用,对过氧化物酶则有促进作用,Mn浓度较低时促进蔗糖酶活性,高浓度时则抑制。Pb对脲酶、磷酸酶、蔗糖酶活性均有抑制作用,其中对磷酸酶抑制作用最强烈,然而低浓度Pb促进过氧化物酶活性。脲酶、磷酸酶对U、Mn、Pb污染反应更敏感。通过相关性分析、回归分析及生态抑制效应研究,结果表明土壤脲酶和磷酸酶适于作为监测评价土壤U污染的生物指标。脲酶、磷酸酶比蔗糖酶和过氧化物酶更适于表征土壤Mn、Pb污染程度。  相似文献   

9.
狐尾藻对水体和沉积物中碱性磷酸酶动力学特征的影响   总被引:3,自引:1,他引:2  
在室内模拟条件下栽培狐尾藻,通过对上覆水、间隙水和沉积物中碱性磷酸酶动力学参数变化的分析,揭示了沉水植物对湖泊富营养化影响的酶学机制. 结果表明:在试验条件下,栽培狐尾藻使上覆水、间隙水和沉积物中的碱性磷酸酶的最大反应速率(Vmax)均有所降低;狐尾藻对上覆水和底质中碱性磷酸酶反应速率及亲和力的抑制作用比较明显,对间隙水主要是抑制溶解性碱性磷酸酶的Vmax;狐尾藻对土壤中碱性磷酸酶的影响比同一营养水平的沉积物大,与沉积物相比,土壤作底质时上覆水中碱性磷酸酶的Vmax和Km(米氏常数)高,底质中碱性磷酸酶的Vmax和Km低;沉积物中碱性磷酸酶的Vmax呈上升趋势,与上覆水相反,间隙水中碱性磷酸酶的Vmax季节性变化明显,其最高值出现在7—8月.   相似文献   

10.
纳米银与石墨烯对土壤微生物及土壤酶的影响   总被引:2,自引:0,他引:2  
采用室内暗培养试验分别探究了纳米银与石墨烯对土壤微生物及土壤酶的不同影响.将不同剂量的纳米银(0、10、100、150 mg·kg~(-1))与高纯石墨烯(0、10、100、1000 mg·kg~(-1))分别与等量棕壤充分混匀,然后进行暗培养.在第3、7、15、30和60 d时取样,测定土壤脲酶、土壤碱性磷酸酶、土壤脱氢酶和土壤过氧化氢酶的活性及土壤细菌、真菌和放线菌的数量,并在培养期间测定土壤呼吸速率及CO2累积量.结果表明,所有纳米银处理均抑制土壤的呼吸作用,并且剂量越高,抑制作用越明显;而石墨烯处理未对土壤呼吸产生显著影响.10 mg·kg~(-1)纳米银处理下,土壤真菌数量在整个培养期内均显著低于对照,土壤细菌在第60 d时也被显著抑制,但土壤放线菌数量无变化;与对照相比,100和150 mg·kg~(-1)的纳米银处理显著降低了土壤细菌、真菌、放线菌的数量.10和100 mg·kg~(-1)的石墨烯处理下,土壤细菌、真菌、放线菌数量则均无显著变化.1000 mg·kg~(-1)的石墨烯显著增加了土壤中细菌与真菌的数量,却对土壤放线菌数量无影响.纳米银处理显著抑制土壤脲酶、脱氢酶活性,却对土壤过氧化氢酶与磷酸酶活性基本无影响.10和100 mg·kg~(-1)石墨烯处理对土壤脲酶有一定的促进作用,1000 mg·kg~(-1)石墨烯处理对土壤过氧化氢酶和脱氢酶有一定的促进作用,而不同剂量的石墨烯在培养后期均对碱性磷酸酶产生抑制作用.总体来说,纳米银在一定程度上对土壤酶及土壤微生物结构产生了负面影响,而石墨烯对土壤酶及土壤微生物结构的影响不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号