首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以饱和砂土液化后场地失效模式特征与场地失效时群桩基础地震反应破坏机理为研究目的,依托中国建筑科学研究院大型模拟地震振动台系统,开展可液化场地、非液化场地在水平地震动激励下桩-土-结构动力相互作用动力体系大型振动台系列试验。基于本次系列试验研究对象以及试验目的,阐述了系列试验中动力模型体系相似比设计的基本原则、地基的制备、模型结构制作、各个种类传感器的选择与布设、输入地震记录的选取与工况安排等内容,介绍了阵列式位移计、非接触式位移动态采集系统等新型传感测试设备,并对所采用的层状单向剪切模型土箱设计合理性与科学性进行了验证。由之后的试验结果可知,本次系列试验设计方案是合理、可靠的,层状剪切模型箱的"模型箱效应"很小。  相似文献   

2.
为研究液化土体侧向扩展对群桩基础动力响应的影响,设计了可液化场地流动变形对桩基础地震反应影响的小型振动台模型试验。采用"钢带法"估计不同位置、不同类型场地地基土的侧向位移,探讨了地基土侧向流动速率与桩基结构地震内力的相关性,对比分析了上部结构惯性力及场地类型对桩身内力反应的影响,研究了由倾斜场地土体侧向扩展导致的群桩偏移运动。试验结果表明,桩周及下游土体的侧向位移随着土层深度的减小而逐步增大。可液化土体发生液化时所产生的流滑效应促使土体孔压加速消散。在水平场地条件下,土体侧向扩展沿土层深度方向线性分布;而倾斜场地条件下,土体的侧向扩展沿土层深度呈"抛物线型"分布。随着地基土液化,群桩基础受到的土体侧向约束力逐渐降低,进而使得群桩的峰值位移逐渐减小。  相似文献   

3.
排水刚性桩将竖向排水体和刚性桩相结合,是一种有效的地基抗液化处理措施。但目前对排水刚性桩在可液化倾斜场地中抗液化侧向变形的性能研究还比较缺乏,制约了其推广与应用。通过振动台试验,开展了可液化倾斜场地中排水刚性桩和普通刚性桩的对比研究,从土体内部动孔压响应、液化土体的流动性质、桩顶水平位移等角度研究了排水刚性桩对可液化倾斜场地的处理效果,并考虑了群桩布置形式的影响。结果表明,排水刚性桩是一种有效的加固可液化倾斜场地的处理措施,可以较好的限制液化土体侧向变形;相同群桩布置形式下,排水刚性桩限制土体流动变形效果优于普通刚性桩,且这种限制效果在坡顶位置更为明显;对于普通刚性桩,群桩梅花形布置形式相对于正方形布置形式能更好的阻止液化土体的流动变形,而对于排水刚性桩,群桩布置形式影响较小。  相似文献   

4.
地下隧道在修建过程中不可避免会穿越可液化地层,在地震作用下会发生砂土液化从而导致结构破坏。以安徽省亳州市汤王大道过河隧道工程为背景,采用室内振动台试验进行缩尺模型的设计与研究,分析地基土体与隧道结构的振动液化响应规律,研究过河隧道工程在地震液化时的上浮变形机理。结果表明:上层土体达到液化时会较下层延迟1.5 s 左右,表明上部土体抗剪强度的衰减比下部土体更加明显;土体深度越大,超静孔压上升越快,且峰值越高;振动开始时由于下层土体先液化,会导致一定的向下位移,之后由于浮应力大于有效承载力导致隧道逐渐上浮并趋于稳定,当振动结束后位移的上浮量为8.9 mm。  相似文献   

5.
根据软弱场地土上地铁车站结构大型振动台模型试验结果,以软件ABAQU S为平台,采用记忆型嵌套面黏塑性动力本构模型和动塑性损伤模型,分别模拟土体和车站结构混凝土的动力特性,建立了土-地铁车站结构非线性动力相互作用二维和三维有限元分析模型,对各种试验工况下地基土-地铁车站结构体系的地震反应进行了数值模拟,并与试验结果进行了对比。结果表明:二维、三维数值模拟与振动台模型试验结果基本一致,三维模型可更好地模拟软弱场地与地铁车站结构的动力相互作用及模型结构的动力反应。数值模拟结果和振动台试验结果可相互验证其可靠性。  相似文献   

6.
采用数值模拟和振动台试验相结合的方法,完成了悬挂式层状多向剪切变形模型箱装置的制作,开展了模型箱自振特性的测试和模型材料物理性质测试,探讨了试验相似比的确定、地基和复杂地铁车站结构模型的制备方法、复杂地铁车站结构合理规模的确定、振动台输入地震动的选取及其加载方式、动态数据采集系统和传感器的选择与布置等问题,为顺利开展双向水平地震作用下复杂地铁车站振动台模型试验奠定了基础。  相似文献   

7.
为了分析液化条件下的地下结构动力反应以及得到相应的简化分析方法,采用数值计算方法,基于ABAQUS软件平台,获得了液化场地的孔压效应,得出了液化场地对地下结构动力作用影响,分析了地下结构的损伤特性和变形特征。结果表明:随着峰值加速度的增加,场地的液化区域逐渐增大,孔压比的极大值区域出现在地下结构顶板上方;由于上覆土层的影响,地下结构的损伤以压缩损伤为主;在相同地震动作用下,液化场地中的地下结构损伤程度大于非液化场地中的地下结构损伤程度,并且得出地下结构的变形是以侧向变形为主。针对液化场地对地下结构的作用效应,建立土-地下结构体系的简化力学模型,得出液化土体中地下结构侧向变形的解析解,并通过了数值分析结果验证了该简化分析方法正确性和可行性。  相似文献   

8.
目前针对于基础隔震结构的性态水平研究往往基于刚性地基假设,未考虑 SSI 效应对结构损伤的影响。因此,为研究柔性地基上小高宽比基础隔震结构的抗震性态水平,本文以拟建结构为背景,利用 ABAQUS 有限元软件建立该小高宽比基础隔震结构建筑物的有限元计算模型,依据相关规范规定,选取 El?Centro 波、Kobe 波和卧龙波,通过改变土体等效剪切波速设计扩展出 5 种场地,分析了地震动特性、场地条件以及输入地震动加速度峰值对该结构地震反应的影响规律,对该结构的损伤程度进行了统计分析。结果表明:柔性地基上随结构?土体相对刚度比的增大,基础隔震结构的上部结构损伤和隔震层损伤均增大,且上部结构的损伤明显滞后于隔震支座损伤,IV 场地在同等条件下损伤最严重;中长周期地震波对于隔震结构损伤影响较大;选取了层间位移角、隔震层位移作为抗震性态水平的量化指标,基于计算结果,本文初步给出了两类指标与结构?土体相对刚度比的预测公式,提出了不同类别场地下小高宽比基础隔震结构的抗震性态水平划分及其破坏程度的物理描述。  相似文献   

9.
液化场地桩基动力响应是岩土地震工程领域重要的研究课题,而研究液化场地桩基动力响应有效的方法包括大型物理模型试验和数值模拟。鉴于此,针对已完成的振动台试验,采用 FLAC3D有限差分计算程序,建立了液化场地桩?土动力相互振动台试验数值模型。在数值模拟中,承台采用实体单元,桩采用桩单元,柱墩采用梁单元, 考虑液化效应的饱和砂土采用 Finn 模型,粘土采用 Mohr?Coulomb 模型。模型边界采用自由场边界,采用弹簧?滑块?裂缝单元模拟桩?土界面。通过对比振动台试验结果表明:建立的有限差分数值模型能够再现结构和地基的动力响应,进而验证了数值模型的可靠性。同时,分析了引起数值计算结果与试验结果差异的主要原因。所采用的数值分析方法对类似布置的桩?土相互作用数值分析提供参考与借鉴。  相似文献   

10.
根据可液化土层上土-地铁隧道结构动力相互作用大型振动台模型试验结果,以软件ABAQUS为平台,将地基土-地铁隧道结构体系视为平面应变问题,采用记忆型嵌套面粘塑性动力本构模型和动塑性损伤模型分别模拟土体和隧道结构混凝土的动力特性,建立了土-地铁区间隧道非线性动力相互作用的有限元分析模型。对各种试验工况下地基土-地铁隧道结构体系的地震反应进行了数值模拟,并与试验结果进行了对比。结果表明:数值模拟与振动台模型试验结果基本一致,呈现出相似的规律性,相互验证了基于ABAQUS软件的力学建模和振动台试验结果的正确性。  相似文献   

11.
介绍了STW型生态土壤稳定剂对宁淮高速公路边坡膨胀土的胀缩性、水稳性、强度、抗冲刷性等的改性试验研究,并结合现场试验,分析了STW型生态土壤稳定剂用于膨胀土边坡坡面防护的效果。试验结果表明:STW型生态土壤稳定剂改性膨胀土的胀缩性,随着稳定剂掺量的增大而减小;改性土的水稳性,随着稳定剂稀释浓度的增大而增强;同时,改性土的强度得到显著提高,抗冲刷性能得到明显增强,具有显著的防治水土流失、促进表层固化、提高坡面稳定的效果。  相似文献   

12.
生态护坡技术是一种日益被重视的护坡方法。生态土壤稳定剂是一种既能稳定土壤,又能促进植物生长的新型土壤改性材料。以宁淮高速公路某段路堑边坡作为试验段,应用自主研发的一种新型生态土壤稳定剂对试验段进行护坡绿化,采用FLAC-3D模拟计算软件分析了膨胀土路堑边坡表层改性土的强度及厚度变化对边坡整体稳定性的影响。研究表明,生态土壤稳定剂除了能防治坡面因冲刷而造成的水土流失、有利于植物生长外,还能提高边坡的整体稳定性。  相似文献   

13.
STW型生态土壤稳定剂改性土强度试验研究   总被引:2,自引:2,他引:0  
对STW型生态土壤稳定剂改性重塑土在不同掺量、不同制备方法及不同养护条件下的强度变化进行了试验研究。试验结果表明:STW型生态土壤稳定剂对重塑土无侧限抗压强度具有明显的增强效果,并与试样的制备方法、稳定剂掺量及养护条件有关;5%的掺入量改性效果最佳;在室温下养护72小时其强度提高幅度最大。同时,还对STW型生态土壤稳定剂土质改性机理进行了分析。  相似文献   

14.
为了明确非饱和泥炭土的土水特征及其影响因素,以原状泥炭土和人工调配的 5 种不同有机质含量的重塑泥炭土为研究对象,采用滤纸法测试其基质吸力,绘制出相应的土水特征曲线,分析泥炭土原状样和重塑样土水特性的差别,以及不同有机质含量对于泥炭土土水特性的影响;选用 Gardner 模型、Van Genuchten 模型和 Fredlund & Xing 模型对试验结果进行拟合,比较 3 种模型对泥炭土的适用性;最后分析比较高分解度泥炭土的土水特征曲线与其他土类的差异。试验结果表明:有机质含量相同时,原状土样的进气值和残余值小于重塑土样的进气值和残余值,说明原状土样的持水能力弱于重塑土样;有机质含量对泥炭土的土水特征曲线有很大影响,随着土中有机质含量的增加,土的持水能力变强,土样的进气值从 155 kPa 增长到 1 486 kPa,残余值从 4 796.7 kPa 增长到 35 101.5 kPa;3 种模型拟合优良度依次为 Van Genuchten 模型、Fredlund & Xing 模型、Gardner 模型;通过对比,发现高分解度泥炭土持水能力最强,其特征值大于膨润土。  相似文献   

15.
软土地区采用型钢水泥土搅拌墙(SMW工法)支护形式优势非常明显,但目前对SMW工法墙-土相互作用机理的研究不够透彻,制约了其推广与应用。为深入探索墙-土相互作用机理,针对软土地区SMW工法建立了大比尺试验模型,对各工况墙顶位移、墙侧土压力以及型钢应变进行了测试。试验结果表明:SMW工法墙顶位移速率变化随基坑挖深增加呈U型趋势,而位移呈S型发展,位移时间效应显著,挡墙存在明显的最优嵌固比;实测墙背主动土压力呈抛物线型分布,基坑墙体位移值和位移速率均影响极限土压力发展,实测极限主动土压力大小间于Rankine主动土压力和静止土压力之间,而实测极限被动土压力远小于理论值;水泥土和型钢的组合挡墙承载能力和刚度明显优于型钢,且二者变形协同性较好,建议在SMW工法支护结构设计时考虑水泥土对组合挡墙的刚度贡献。  相似文献   

16.
土壤含水量和植被对浅层滑坡土体抗剪强度的影响   总被引:3,自引:0,他引:3  
通过对裸地和桉树林地两种土壤在不同土壤含水量、不同深度的非饱和土的直剪试验,研究了植被类型和含水量对非饱和土抗剪强度的影响.结果表明,随着含水量的增加,非饱和土的粘聚力和内摩擦角均减小,粘聚力有较大变化而内摩擦角变化较小,植被具有提高非饱和土抗剪强度的作用.  相似文献   

17.
地震作用引发的地基液化,往往导致沉箱基础的破坏。本文基于Biot两相饱和多孔介质动力耦合理论,采用FE-FD耦合数值分析方法,对液化海床沉箱基础的地震反应进行非线性有效应力分析。在数值分析过程中,建立了以土骨架位移和超静孔隙水压力表达的us-pw动力固结方程和循环弹塑性本构模型,该方法能够很好地模拟地震作用下沉箱码头的动力特性及液化破坏的影响。通过数值模拟计算,分析了采用碎石桩进行置换砂区域的防液化加固方法,并就碎石桩处理区域的选择提出了建议。  相似文献   

18.
粉土动力特性研究综述   总被引:6,自引:0,他引:6  
粉土是一种具有特殊工程性质的土,粉土中砂粒、粉粒、粘粒都存在,这3种粒种分别具有不同的性质。总结这3种粒种对粉土动模量和阻尼的影响,得到了粉土模量阻尼的表达式以及粉土动力特性符合土体非线性和滞后性的一般规律。液化是一种特殊的强度问题,国内外预测液化可能性的方法主要有经验法、剪切波速法、Seed法、有限元法等。室内研究主要集中在粉土动力特性试验研究上,研究了各种因素影响下粉土液化特性,包括3种不同的粒种对粉土液化特性的影响,尤其是粘粒含量影响下粉土液化特性。粉土的动孔压响应与砂土有很大区别,这也可以用粉土特殊的颗粒结构组成来分析。最后,分析了粉土液化机理,并对粉土进一步研究提出了几点看法。  相似文献   

19.
加筋土边坡临界滑动场   总被引:1,自引:0,他引:1  
在分析加筋土边坡稳定性时,将加筋材料的作用视为施加于滑面上的等效力,建立了满足力平衡的加筋土边坡安全系数的计算格式;将边坡临界滑动场数值模拟方法进行推广,提出了基于力平衡的加筋土边坡临界滑动场计算方法,可以得到形状任意的临界滑动面及边坡最小安全系数。通过算例,比较加筋前后临界滑动面和安全系数的变化,并探讨了加筋水平间距、强度、长度对加筋土边坡稳定性的影响。  相似文献   

20.
准饱和砂土与完全饱和砂土不同之处在于前者含有少量封闭气体,在爆炸荷载作用下,准饱和砂土中气体含量的微小变化对波的传播特性将会产生巨大影响。本文基于有效应力分析法,在有效应力弹塑性模型的基础上考虑了少量气体的影响,将该模型编制成模块并与通用岩土分析软件FLAC接口。进而采用多组分介质模型模拟分析了准饱和砂土在爆炸平面压缩荷载作用下的波传播特性,以及气体含量改变对波传播的影响。通过数值模拟得出了一些定性的结论:饱和土体中气态组份含量的变化对土体压缩机制、坡在不动刚性上的反射、超孔隙水压力都产生重要影响;随气体含量的增加,波阵面传播速度、声速会急剧下降,但在相同压力下,质点运动速度反而随气体含量的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号