首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
根据多米诺效应的特点,提出了一种针对危险品区域的多米诺效应的风险分析方法.通过多米诺效应事故场景的辨识、设备的概率损坏模型和多米诺分析技术,分析区域内所有危险设备的多米诺效应风险指数和设备在多米诺事故链中的传播作用,定量分析多米诺事故后果.通过该方法可以得到区域内设备的多米诺效应风险指数和多米诺事故的后果风险.通过该方法可建立起区域的安全防范措施,从而有效预防潜在的多米诺效应,降低事故风险.  相似文献   

2.
化工储罐区池火灾多米诺效应风险评估   总被引:2,自引:1,他引:1  
化工储罐区储罐数量较多且集中,一旦发生事故很可能诱发多米诺效应造成灾难性的后果。在分析池火灾多米诺效应作用模式的基础上,建立了池火灾多米诺效应风险评估模型,并对某化工储罐区进行了实例计算,分析了单一储罐池火灾事故引发其他储罐池火灾的风险。分析结果表明,池火灾是诱发化工储罐多米诺事故的重要因素,且会造成风险的显著增加,但并非所有的池火灾事故都会诱发多米诺效应。此外,将多米诺效应评价方法应用于化工储罐池火灾事故风险评估中可有效地预测次生事故的发生概率和后果,从而提出针对性措施。  相似文献   

3.
Chemical industrial areas or so-called chemical clusters consist of hundreds, and sometimes thousands, of chemical installations situated next to each other. Such areas can thus be seen as the summation of a large number of structures exhibiting danger to a certain degree for initiating or continuing accident domino effects or knock-on effects. In this article, an approach to investigate in a systemic way the vulnerability of each installation within the larger chemical cluster context, is developed. Our suggested method results in a prioritization of chemical installations with respect to their vulnerability for domino effects. The method can be used for intelligently designed protection of chemical industrial areas against terrorist attacks.  相似文献   

4.
为降低危化品相关的化工事故造成的人员伤亡和财产损失,以化工多米诺事故为研究对象,探讨由初始事故引发1个或多个次生事故的连锁反应机理与风险评估方法。提出应用蒙特卡洛模拟对多米诺事故风险进行动态量化的方法,梳理化工多米诺事故风险的识别、分析、评定、处理全周期管理流程,并以1个天然气压气站为案例,验证基于蒙卡模拟的化工多米诺事故风险量化方法的有效性。结果表明:该方法可以更准确地对化工多米诺事故风险进行定量评估。多米诺事故风险全周期管理流程的梳理能够有效指导化工企业开展安全管理、事故预防等工作。  相似文献   

5.
为了更好地降低化工企业罐区事故造成多米诺效应的风险,提出1种基于保护层分析(LOPA)的定量风险评估程序。首先,阐述基于保护层分析(LOPA)逻辑的多米诺定量风险评估流程,即引入包括可用性、有效性及3种逻辑门定义及量化的安全屏障定量评估;然后,利用LOPA的分析逻辑将安全屏障融入多米诺定量风险评估框架中;最后,选取2×2 000 m3苯乙烯罐区为对象,识别防火层与喷淋冷却系统2种安全屏障并开展基于LOPA逻辑的罐区多米诺效应定量风险评估,得出安全屏障能有效地降低多米诺事故发生频率及罐区个人风险的结论。研究结果表明:该分析方法可为化工企业开展多米诺效应定量风险评估提供参考。  相似文献   

6.
多米诺效应是引发化工重大事故的主要原因之一.本文综合国内外的研究成果,对火灾热辐射、冲击波超压等造成的多米诺效应进行了深入分析,建立基于多米诺效应的定量风险评价模型,其中包括了评价流程、传播概率、阈值距离计算、多米诺效应对事故频率的影响及后果分析的内容.最后利用Matlab7.1计算平台,以汽油储罐进行实例分析,结果表明该方法是一种适用于多米诺效应定量评价的良好方法,能够比较科学、有效的对危险单元进行风险评价,使重大事故风险评价更切合实际,为政府监管部门和化工企业进行事故的控制和预防提供决策技术.  相似文献   

7.
Escalation of primary accidental scenarios triggering a “domino effect” have caused extremely severe accidental events in the chemical and process industry. The identification of possible escalation events is required in the safety assessment of sites where relevant quantities of hazardous substances are stored or handled. In the European Union, “Seveso-II” Directive requires the assessment of on-site and off-site possible escalation scenarios in sites falling under the obligations of the Directive. In the present study, a methodology developed for the quantitative assessment of risk due to domino effect was applied to the analysis of an extended industrial area. Recently developed equipment damage probability models were applied for the identification of the final scenarios and for escalation probability assessment. The domino package of the Aripar-GIS software was used for risk recomposition. The results evidence that quantitative risk assessment of escalation hazard is of fundamental importance in order to identify critical equipment and to address prevention and protection actions.  相似文献   

8.
Major accidents have catastrophic effects on humans and all of society. To prevent the occurrence of major accidents, it is essential to strengthen the management of major hazard installations. Generally, effective identification and reasonable evaluation of major hazard installations are the basic steps in safety management. At present, the evaluation methods for major hazard installations mainly focus on consequence analysis and probabilistic analysis without considering the vulnerability of hazard-affected bodies. Therefore, the proposed method will introduce regional disaster system theory and comprehensively analyze hazard-formative factors, the hazard-formative environment and hazard-affected bodies to achieve a more complete and effective assessment of major hazard installations. Hazard-formative factors are evaluated based on the rapid ranking method, hazard-formative environments are evaluated based on Bayesian networks, and hazard-affected bodies are evaluated based on the fuzzy comprehensive evaluation method. A tank group and a chemical industrial park are used to verify the feasibility and effectiveness of the new method.  相似文献   

9.
Explosion fragments are the main cause of domino effect in accidents of the chemical and process industry. A number of significant studies have been conducted to further our understanding of the mutual impact of two major hazard installations (MHIs). This work focused on the development of a new model for the impact probability of domino effect triggered by fragments. Firstly, an expression for the initial projection velocity of fragments was founded by taking the explosion moment as a polytropic process and solving energy transformation equation, then the flight trajectory and velocity were represented by some equations with the flight boundary conditions in flight process under gravity and air friction. With the obtained equations as the objective function, the projection uncertainty was analyzed through sampling of the random variables. Finally, a new systemic model for the impact probability of domino effect is put forward by integrating the flight laws and projection uncertainty of fragments, and the impact probability linear equations with the coefficient matrix of secondary effect were built up in order to calculate the impact probability of domino effect. The study on domino effect impact probability provides some useful insights into the generation mechanism, projection features, flight laws and impacts on targets of the fragments, and also lays a foundation for analysis of domino chain risk caused by explosive fragments in chemical industrial complex.  相似文献   

10.
Since the late 80s the application of quantitative risk assessment to the issue of land-use planning with respect to major accident hazards emerged as a topic to be addressed within the safety assessment of chemical and process plants. However, in the case of industrial clusters or complex industrial areas specific methodologies are needed to deal with high-impact low-probability (HILP) events. In the present study, innovative methodologies developed for the quantitative assessment of risk due to domino and NaTech scenarios are presented. In recent years a set of models for the calculation of equipment damage probability were developed. A specific effort was dedicated to the improvement of models for the calculation of equipment damage probability in these accident scenarios. In the present study, the application of these models to case-studies was analyzed. The results of the improved models obtained for NaTech quantitative assessment were compared to previous results in the literature. A specific innovative approach was developed to multi-level quantitative assessment of domino scenarios, and its potential was analyzed. The results were examined also evidencing the role and the progress with respect to the pioneering work started on these topics by Franco Foraboschi.  相似文献   

11.
多米诺效应的风险分析方法   总被引:2,自引:0,他引:2  
介绍与分析多米诺效应的相关研究,并针对多米诺效应的定量风险分析,建立了从多米诺场景辨识到后果分析的多米诺效应定量分析方法.通过分析初始事故带来的物理效应对邻近设备的影响,计算了二次设备的损坏概率;分析了多米诺场景,计算了多米诺事故频率,并根据多米诺事故的后果得到个人风险和社会风险曲线.多米诺效应的风险是工业区一个潜在的严重风险,加强多米诺效应的研究对工厂和工业区的安全管理与规划都有重要意义.  相似文献   

12.
目前,绝大多数危险性评价所研究的对象是单一的危险源或危险过程.但是,在日常工业生产中,常常会出现由于初次事故能量的释放而导致的二次甚至多次事故的发生.随着工业生产的大型化,储存量的递增使得多米诺事故发生的可能性也在增加.LPG储罐区正是发生此类事故的危险区域.通过相关模型的运用评价了在LPG储罐区发生火灾爆炸后,相邻危险源发生多米诺事故的可能性,并对安全间距作了着重的分析.  相似文献   

13.
The construction of chemical clusters whereby a variety of chemical plants are located next to each other provides great economic benefits. However, in such clusters, due to the mere scale on which hazardous materials are processed, stored and handled, the potential of various accidents is much higher than in single companies. Furthermore, the close proximity of process installations and storage tanks in such areas gives rise to the risk of domino effects. Therefore, land use planning and layout design has always been a challenge within such clusters.In this paper, a Quantitative Risk Assessment (QRA) is carried out and used as a decision making tool to evaluate the acceptability of constructing a new chemical plant adjacent to an existing one. For this purpose, standard parameters such as individual risk and societal risk were quantified, before and after the new plant would come into operation. Given the experience of past accidents in the process industries, the likelihood of domino accidents in the two neighboring plants has also been analyzed.  相似文献   

14.
A software procedure was developed for the quantitative assessment of domino effect. The procedure was based on a systematic methodology for the identification of domino scenarios and for the assessment of consequences and expected frequencies of the escalation events. A geographical information system (GIS) platform was interfaced to the domino assessment software. The implementation of plant lay-out data to the GIS allowed the automatic identification of the possible targets of escalation effects by the software procedure, and a straightforward calculation of the contribution to individual and societal risk indexes caused by the possible domino scenarios. The procedure was applied to the analysis of several case-studies based on actual plant lay-outs. The results evidenced that the approach allows the quantitative assessment of risk caused by escalation events with a limited additional effort with respect to that required by a conventional QRA. The use of a GIS-based software was a key element in the limitation of the effort required for the quantitative assessment of domino scenarios. Moreover, the results of the case-studies pointed out that the estimation of risk increase due to domino events is an important tool for an effective assessment and control of industrial risk in chemical and process plants.  相似文献   

15.
Accidents caused by the domino effect are the most destructive accidents related to industrial sites. The most typical primary incidents for a domino effect sequence are explosions (57%), followed by fires (43%) (Abdolhamidzadeh et al., 2010). These former can generate three escalation vectors (heat load, overpressure, and fragments), and may affect the surrounding equipments and/or facilities. If the affected targets are damaged, they may also explode and generate other threats to other surrounding facilities and so on. These chains of accidents may lead to catastrophic consequences and may affect not only the industrial sites, but also people, environment and economy. This paper presents a methodology for quantitative assessment of domino effects caused by fire and explosion on storage areas. The individual and societal risks are also estimated.  相似文献   

16.
A historical survey was performed on 330 accidents involving domino effect, occurred in process/storage plants and in the transportation of hazardous materials; only accidents occurred after 1st-January-1961 have been considered. The main features – geographical location, type of accident, materials involved, origin and causes, consequences, domino sequences – were analyzed, with special consideration to the situation in the developing countries and compared to those from other previous surveys. Among the involved substances, LPG was the most frequent one, followed by liquid hydrocarbons. Process plants (38.5% of cases) and storage areas (33%) were the most common settings; 10.6% of past domino accidents occurred in transfer operations. The ratio between “two-step” and “three-step” domino accidents was found to be 6. A specific analysis of the accidents (84) occurred in the 21st century was performed, comparing them with the total set of accidents. Finally, a set of specific recommendations inferred from the results is provided.  相似文献   

17.
Lightning strike is the natural event more frequency causing Natech accidents involving atmospheric storage tanks. Despite the resulting fires have usually limited severity and only local effects, domino effect may cause the escalation of these primary events, possibly affecting nearby pressurized storages and process equipment, thus resulting in relevant increase in the potential area impacted. A methodology was developed for the quantitative assessment of risk due to domino effects caused by Natech accidents triggered by lightning. A comprehensive procedure was obtained, tailoring lightning risk assessment to include probabilistic models for domino escalation based on probit approach and combinatorial analysis. The methodology was applied to a case-study to evidence the shift in risk figures due to domino effect and the credibility of the secondary domino scenarios. The results of the case-study show that an increase up to two orders of magnitude with respect to risk calculated for conventional scenarios is possible when considering lightning-induced Natech primary scenarios and their escalation.  相似文献   

18.
城市重大危险源管理中的GIS应用研究   总被引:1,自引:1,他引:0  
在阐述重大危险源管理要求的基础上,研究地理信息系统在重大危险源信息描述、数据管理、风险评价和风险绘制、事故预警以及事故应急救援中的应用。通过地理信息系统描述和管理重大危险源,方便地表示和查询城市各重大危险源的地理位置;利用GIS进行风险评价和风险地图绘制,评估和表示出城市不同区域和地段的相对风险大小,便于城市发展规划;利用GIS进行事故预警,可及时发现和确定重大危险源事故隐患位置,并通过采取措施消除事故在萌芽状态;利用GIS辅助应急救援,有助于分析事故的发展趋势、影响范围和寻求事故救援的最佳路径等其他重大救援决策。  相似文献   

19.
为探究氢能电站火灾爆炸事故发展规律,采用多米诺效应对电站进行事故概率和风险研究,建立氢能电站多米诺效应定量风险分析模型。基于设备受损概率模型与多米诺理论基础,提出氢能电站多米诺效应概率计算方法,并将方法运用到实际案例,结合SAFETI软件对具体多米诺事故场景进行定量计算。研究结果表明:氢能电站易发生多米诺事故,考虑一级多米诺效应后人员潜在死亡概率增加56%。研究结果可为制定氢能电站安全防控措施以及降低火灾爆炸事故对人员和设备的危害提供依据。  相似文献   

20.
Empirical research on major accident safety in the second largest chemical cluster worldwide, the Antwerp port area, supports the design of a meta-technical framework for optimizing external domino prevention. First, the majority of Seveso top tier companies have expressed a willingness to cooperate more intensively to protect themselves against potential off-site major accidents. Second, Hazop, What–If analysis and the Risk Matrix, interesting building blocks for such a framework, are frequently used risk analysis techniques at Seveso lower tier and Seveso top tier companies. The developed framework, called Hazwim, integrates these three complementary techniques into an effective standardized risk analysis framework for the prevention of external xdomino accidents in an industrial area. The main strengths of Hazwim are its completeness and its cost-effectiveness. The combination of techniques on the one hand and qualitative and quantitative data on the other, offers a comprehensive up-to-date list of cross-company domino hazards and recommended actions in the area under consideration. The Hazwim framework offers support to prevention managers and safety policy makers concerning external domino prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号