首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在连续性反应器内以臭氧-光催化技术氧化硫化氢,证实了臭氧对光催化脱除硫化氢有促进作用,探讨了可能存在的主要基元反应和二氧化钛失活的原因,考察了反应温度、臭氧含量、硫化氢初始体积分数等因素对臭氧-光催化技术脱除硫化氢的影响。结果表明,臭氧在光催化作用下快速分解为活性氧离子或自由基,硫化氢在臭氧和光催化联合作用下快速氧化为二氧化硫,最终转化为硫酸;硫酸在二氧化钛表面的沉积使其催化活性降低,导致硫化氢和二氧化硫的转化率逐渐下降。研究还发现,当硫化氢的初始体积分数为100×10-6时,臭氧和硫化氢的最佳摩尔比约为2:1;臭氧-光催化脱除硫化氢的最佳温度为70℃左右;降低硫化氢的初始体积分数可大幅度降低二氧化硫的选择性。  相似文献   

2.
Bulk deposition composition and pine branch washing were measured from April 1999 to March 2000 on the east coast of Spain. The main objective was to characterise N deposition patterns with special emphasis on dry deposition. Bulk deposition in the region is dominated by neutralisation processes by Ca2+ and HCO3-, ClNa of marine origin and a high correlation between NO3- and SO4(2-). SO4(2-) concentrations show a decrease with respect to previous studies in the region in agreement with generalized sulfur emission decreases while the remaining ions, including NO3-, are higher due to their general increase as well as to the inclusion of dry deposition in bulk collectors in the present study. An enrichment in NO3- has been observed in dry deposition composition branch washing) with respect to bulk deposition, while an impoverishment has been observed in the case of NH4+. Annual bulk deposition varies between 7.22-3.1 and 3.5-1.8 Kg ha(-1) year(-1) for S- SO4(2-) and N- NO3-, respectively. N total deposition goes from 9.78 to 6.8 Kg ha(-1) year(-1) at most stations, with the lowest deposition at the control station and Alcoi. The relative dry deposition with respect to the total was over 40% at most stations, going up to 75% at the southern station. N-deposition is expected to be higher considering that N-NH4+ deposition has been underestimated in this study.  相似文献   

3.
Agricultural meteorological modeling techniques are used to investigate the relative and absolute dry deposition fluxes of SO2 (as sulfur), HNO3 (as nitrogen) and O3 to large fields of maize, soybeans, and alfalfa exposed in conditions as measured in northern Illinois, central Pennsylvania, and eastern Tennessee. For HNO3, the differences in seasonal deposition rates among the three types of plant species are small. Within the same environment, the soybean canopy has the potential to receive substantially more gaseous dry deposition of SO2 and O3 than the maize and alfalfa (which are about the same), as a result of lower stomatal resistance and consequently higher deposition velocities. Deposition differences among the sites are small except for the case of SO2, for which deposition rates estimated for northern Illinois are nearly double those at the other locations. The high SO2 deposition at the northern Illinois location is a consequence of the higher air concentrations observed there.  相似文献   

4.
The objective of the National Dry Deposition Network is to determine patterns and trends of dry deposition for various sulfur and nitrogen species at roughly 50 locations throughout the continental USA. Each site is equipped for collection of continuous meteorological and ozone data and weekly average concentrations of SO4(2-), NO3-, SO2 and HNO3, using a three-stage filter pack. Results from 40 eastern US sites operational throughout 1989 show species-dependent variability from site to site, season to season, and day to night. Annual average concentrations of atmospheric SO4(2-), NO3-, SO2 and HNO3 ranged from 2.7 to 7.9, 0.2 to 3.9, 2.4 to 23.2 and 0.7 to 3.6 microg/m(-3), respectively. Seasonal variability was considerable for all constituents. Day/night data indicate that SO2 and HNO3, but not SO4(2-) and NO3-, are typically found at moderately to substantially lower concentrations at night, especially during spring and summer. Estimated dry deposition for SO2 and HNO3 appear to be much greater than for SO4(2-) and NO3-, respectively. Comparison of measured wet deposition and estimated dry deposition at numerous sites suggests that the two are similar in magnitude over much of the eastern USA.  相似文献   

5.
Emissions of a precursor of acidity in precipitation, sulphur dioxide (SO2), declined in the UK and the EU (15) by 71% and 72%, respectively, between 1986 and 2001, while nitrous oxide emissions declined by about 40%. Acidity in UK precipitation and the deposition of sulphate in precipitation halved during this period, but reductions were larger in the English Midlands than at the west coast and in high rainfall areas (>2000 mm). There is evidence that the smaller reductions in sulphur deposition in the west and south are due in part to shipping sources of SO2. Reductions in sulphur dry deposition (74%) are larger than in wet deposition (45%), due to changes in the canopy resistance to dry deposition. For reduced nitrogen, there has been a small (10%) reduction in emissions and deposition, while for oxidized nitrogen, a substantial reduction in emissions (40%) occurred but wet deposition of nitrate changed by less than 10%.  相似文献   

6.
Microbial transformations of nitrification and denitrification are the main sources of nitrous oxide (N2O) from soils. Relative contributions of both processes to N2O emissions were estimated on an agricultural soil using 15N isotope tracers (15NH4+ or 15NO3-), for a 10-day batch experiment. Under unsaturated and saturated conditions, both processes were significantly involved in N2O production. Under unsaturated conditions, 60% of N-N2O came from nitrification, while denitrification contributed around 85-90% under saturated conditions. Estimated nitrification rates were not significantly different whatever the soil moisture content, whereas the proportion of nitrified N emitted as N2O changed from 0.13 to 2.32%. In coherence with previous studies, we interpreted this high value as resulting from the decrease in O2 availability through the increase in soil moisture content. It thus appears that, under limiting aeration conditions, some values for N2O emissions through nitrification could be underestimated.  相似文献   

7.
本文对采用电化学方法去除SO2/NOx废气这一新的研究方法进行了综述.在用酞花青钴(CoPc)修饰的碳气体扩散电极上,SO2在空气中的体积百分数在20%以下时可以完全被氧化为硫酸,以连二硫酸盐(S2O2-4)作还原剂,Fe2+-EDTA作络合剂时,NO以90%以上的程度还原为NH+4与NH2(SO3H)等低价含氮化合物,产物中未见N2、N2O与NO2等气体,氧化产物SO2-3(或HSO-3)在Pb阴极上还原再生为S2O2-4.用Ce4+作氧化剂可将SO2/NO2氧化为相应的酸,还原产物Ce3+经电解氧化后循环使用.  相似文献   

8.
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.  相似文献   

9.
An intercomparison study involving eight long-range transport models for sulfur deposition in East Asia has been initiated. The participating models included Eulerian and Lagrangian frameworks, with a wide variety of vertical resolutions and numerical approaches. Results from this study, in which models used common data sets for emissions, meteorology, and dry, wet and chemical conversion rates, are reported and discussed. Model results for sulfur dioxide and sulfate concentrations, wet deposition amounts, for the period January and May 1993, are compared with observed quantities at 18 surface sites in East Asia. At many sites the ensemble of models is found to have high skill in predicting observed quantities. At other sites all models show poor predictive capabilities. Source–receptor relationships estimated by the models are also compared. The models show a high degree of consistency in identifying the main source–receptor relationships, as well as in the relative contributions of wet/dry pathways for removal. But at some locations estimated deposition amounts can vary by a factor or 5. The influence of model structure and parameters on model performance is discussed. The main factors determining the deposition fields are the emissions and underlying meteorological fields. Model structure in terms of vertical resolution is found to be more important than the parameterizations used for chemical conversion and removal, as these processes are highly coupled and often work in compensating directions.  相似文献   

10.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

11.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

12.
Chen CL  Wang CH  Weng HS 《Chemosphere》2004,56(5):425-431
This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction.  相似文献   

13.
In the vicinity of a large ammonia emission area, dry and wet deposition of acidifying and eutrophying compounds onto Douglas Fir forests was studied by sampling throughfall, stemflow and bulk precipitation. Deposition amounts of NH(4)(+) and SO(4)(2-) were recognised to be among the highest of Central Europe, resulting in extremely high inputs of (potential) acid to the forest soils (13.1 kEq ha(-1) year(-1)). The contribution of NH(3) emissions from agriculture to the total acid deposition to the forests was 52%. The total nitrogen deposition amounted to 115.0 kg ha(-1) year(-1), 83% originating from NH(3) emissions and 17% from NO(x) emissions. Calculated mean dry deposition velocities of NH(3) and SO(2) were much larger than reported in the literature. A synergistic effect between NH(3) and SO(2) in the process of dry deposition is suggested and evidence for this effect is discussed. When deposition models do not take this interaction into account, they will underestimate NH(3) and SO(2) deposition amounts in areas with intensive animal husbandry.  相似文献   

14.
Land use data are among the inputs used to determine dry deposition velocities for photochemical grid models such as the Comprehensive Air Quality Model with extensions (CAMx) that is currently used for attainment demonstrations and air quality planning by the state of Texas. The sensitivity of dry deposition and O3 mixing ratios to land use classification was investigated by comparing predictions based on default U.S. Geological Survey (USGS) land use data to predictions based on recently compiled land use data that were collected to improve biogenic emissions estimates. Dry deposition of O3 decreased throughout much of eastern Texas, especially in urban areas, with the new land use data. Predicted 1-hr averaged O3 mixing ratios with the new land use data were as much as 11 ppbv greater and 6 ppbv less than predictions based on USGS land use data during the late afternoon. In addition, the area with peak O3 mixing ratios in excess of 100 ppbv increased significantly in urban areas when deposition velocities were calculated based on the new land use data. Finally, more detailed data on land use within urban areas resulted in peak changes in O3 mixing ratios of approximately 2 ppbv. These results indicate the importance of establishing accurate, internally consistent land use data for photochemical modeling in urban areas in Texas. They also indicate the need for field validation of deposition rates in areas experiencing changing land use patterns, such as during urban reforestation programs or residential and commercial development.  相似文献   

15.
Tsai WT  Chyan JM 《Chemosphere》2006,63(1):22-30
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.  相似文献   

16.
Nitrogen dioxide concentrations have been measured at rural sites in the United Kingdom and have revealed a marked spatial variation. The annual mean NO2 concentration varies from approximately 1 microg Nm-3 in Northern Ireland to approximately 7 microg Nm-3 in East Anglia. Though the temporal resolution of the diffusion tube method is limited by exposure periods of 2-4 weeks, it was possible to detect a marked seasonal variation in NO2 concentration at all sites, with higher values in the winter than in the summer. This is in contrast to the small seasonal variation previously observed at sites in London. Sulphur dioxide concentrations were measured daily using a bubbler method and, if expressed in terms of mass of sulphur and nitrogen, the SO2 and NO2 annual mean concentrations were similar. This is in contrast to an S/N ratio of greater than 3 in total UK emissions of SO2 and NOx. It seems likely that this difference is due to a combination of the different spatial distributions and heights of emissions of SO2 and NOx, the influence of local sources of NOx, and the smaller S/N ratio in Continental European emissions.  相似文献   

17.
An Eulerian atmospheric model with complex chemistry (Acidic Deposition and Oxidant Model) and a Lagrangian model with linear chemistry (Ontario Ministry of the Environment Trajectory Model) were used to simulate the wet SO42− deposition pattern over eastern North America for 16 days during April 1981.The two model results agree reasonably well with each other when the 16 day average values are compared. They also show reasonable agreement with observed data. Having established the ability of the models to predict deposition patterns for 1981 emissions, reduction scenarios with 50% SOx and 50% SOx and NOx of the 1981 emissions were studied through the Eulerian model. Near the heavy emissions area, the reduction in SO42− wet deposition is only about 30–40%. In this respect the linear Lagrangian model departs significantly from the Eulerian model. This non-linearity in response is attributed to the role of oxidants in controlling the conversion of SO2 to SO42−.  相似文献   

18.
Portable 24-hr sampling units were used to collect air samples from eight biofilters on four animal feeding operations. The biofilters were located on a dairy, a swine nursery, and two swine finishing farms. Biofilter media characteristics (age, porosity, density, particle size, water absorption capacity, pressure drop) and ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and nitrous oxide (N2O) reduction efficiencies of the biofilters were assessed. The deep bed biofilters at the dairy farm, which were in use for a few months, had the most porous media and lowest unit pressure drops. The average media porosity and density were 75% and 180 kg/m3, respectively. Reduction efficiencies of H2S and NH3 (biofilter 1: 64% NH3, 76% H2S; biofilter 2: 53% NH3, 85% H2S) were close to those reported for pilot-scale biofilters. No N2O production was measured at the dairy farm. The highest H2S, SO2, NH3, and CH4 reduction efficiencies were measured from a flat-bed biofilter at the swine nursery farm. However, the highest N2O generation (29.2%) was also measured from this biofilter. This flat-bed biofilter media was dense and had the lowest porosity. A garden sprinkler was used to add water to this biofilter, which may have filled media pores and caused N2O production under anaerobic conditions. Concentrations of H2S and NH3 were determined using the portable 24-hr sampling units and compared to ones measured with a semicontinuous gas sampling system at one farm. Flat-bed biofilters at the swine finishing farms also produced low amounts of N2O. The N2O production rate of the newer media (2 years old) with higher porosity was lower than that of older media (3 years old) (P = 0.042).  相似文献   

19.
Since 1994 the nickel-processing plant at the Cu-Ni smelter at Harjavalta, south-west Finland, has emitted considerable amounts of NH(3) into the atmosphere. The effects of NH(3) emissions on nitrogen and sulphur deposition in throughfall and the foliar nutrient status were investigated in a Scots pine stand at 0.5 km distance. Bulk deposition, stand throughfall and percolation water (20 cm depth) samples were collected at 4-week intervals during 1992-1998. pH and the Ca, Mg, K, NH(4) and SO(4) concentrations were determined on the samples. NH(3) emissions have strongly increased the scavenging of SO(2) from the air in the pine stand, and the increased levels of N and S deposition were clearly evident as increased foliar N and S concentrations and larger needle size. The increased input of SO(4) into the forest floor was not associated with an increase in the leaching of Ca and Mg from the surface soil layers.  相似文献   

20.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号