首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.  相似文献   

2.
Atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazinedyl-2,4-diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continuously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

3.
羟基氧化铁催化臭氧氧化去除水中阿特拉津   总被引:2,自引:0,他引:2  
以实验室制备的羟基氧化铁(FeOOH)为催化剂,研究了其催化臭氧氧化去除水中痕量阿特拉津的效能,并对影响催化效果因素及降解机理进行了探讨。在本实验条件下,反应8 min时催化氧化阿特拉津的去除率比单独臭氧氧化高出63.2%,而FeOOH对阿特拉津的吸附量很小,结果表明,FeOOH对臭氧氧化水中的痕量阿特拉津具有明显的催化活性。探讨了催化剂投量、pH、阿特拉津初始浓度和重碳酸盐碱度对催化氧化阿特拉津的影响。催化剂最佳投量为150 mg/L,去除率随pH和阿特拉津初始浓度的增加而升高,重碳酸盐浓度为200 mg/L时催化作用受到明显抑制。通过研究叔丁醇对催化反应的影响间接推断了催化反应的机理,叔丁醇作为羟基自由基抑制剂有效地抑制了水中羟基自由基的生成和它对阿特拉津的氧化反应,间接证明这种催化作用遵循羟基自由基的反应机理。  相似文献   

4.
Ning B  Graham NJ  Zhang Y 《Chemosphere》2007,68(6):1173-1179
The indirect reaction of octylphenol (OP) and nonylphenol (NP) with hydroxyl radicals (*OH) during ozonation was investigated at pH values ranging from 6 to 9. A parameter Rct, representing the ratio of the *OH-exposure to the ozone-exposure, was measured using a method involving a low concentration of p-chlorobenzoic acid as a *OH-probe compound during the ozonation. By assuming that Rct is a constant value at a given pH, the second order rate constants of the alkylphenol reaction with hydroxyl radicals were determined as 1.4(+/-0.2) x 10(10) and 1.1(+/-0.2) x 10(10) M(-1) s(-1) for OP and NP, respectively. The proportions of each alkylphenol degraded by direct molecular ozone reaction and indirect hydroxyl radical reaction were predicted at different pH values. The contribution of indirect *OH reactions with each AP was found to represent over 50% of the total degradation for pH approximately 7, and the contribution increases substantially with pH>7.  相似文献   

5.
Abstract

Atrazine (6‐chloro‐N‐ethyl‐N'‐isopropyl‐1,3,5‐triazinedyl‐2,4‐diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

6.
Liu X  Garoma T  Chen Z  Wang L  Wu Y 《Chemosphere》2012,87(10):1134-1140
The rate constants of sulfamethoxazole (SMX) degradation by ozonation and UV254 radiation were investigated under various parameters including influent ozone gas concentration, initial SMX concentration, UV light intensity, ionic strength, water quality in terms of varying anions (bicarbonate, sulfate and nitrate), humic acid (HA) and pH. The results indicated that the removal of SMX by ozonation and UV254 radiation fitted well to a pseudo first-order kinetic model and the rate constants were in the range of (0.9-9.8) × 10−3 and (1.7-18.9) × 10−3 s−1, respectively. The second-order rate constants of SMX with ozone (kO3), under varying operational parameters, were also determined and varied in the range of (0.60-3.38) ± 0.13 × 105 M−1 s−1. In addition, SMX degradation through UV pretreatment followed by ozonation in the presence of HA was proved to be an effective method which can remove SMX with a low ozone dose. The results suggested that ozonation of SMX was more affected by concentration of influent ozone gas, alkalinity, and HA, while incident UV light intensity, pH, and HA were the dominant factors influencing UV degradation of SMX.  相似文献   

7.
Li J  Liu H  Zhao X  Qu J  Liu R  Ru J 《Chemosphere》2008,71(9):1639-1645
The effects of bicarbonate on the characteristic transformation of fulvic acid (FA) and its subsequent trichloromethane formation potential (TCMFP) were investigated in the process of preozonation. Dissolved organic carbon (DOC) removal rate and the residual aqueous ozone concentration during preozonation were measured with different bicarbonate concentration. The presence of bicarbonate inhibited DOC removal and decreased TCMFP yields in the initial oxidation period. In order to explain these phenomena, the molecular weight (MW) distribution (<5, 5-10, 10-30, and >30 kDa) and corresponding TCMFP were investigated for FA and its subsequent oxidation products. Furthermore, transformation of molecular structure, based on MW distribution, was also characterized with Fourier transform infrared (FTIR) spectrum. Bicarbonate showed different inhibiting effects on TCMFP of organic species with different MW, and more significant TCMFP decrement was observed for the high MW fraction (>30 kDa) than for the low MW fractions. Preozonation led to obvious reduction on DOC and UV254 in most of MW fractions wherever bicarbonate was present or not, demonstrating that ozone contributed to both organics mineralization and structure variation, synchronously. As being indicated from the results of FTIR and gas chromatography-mass spectrometry, the functional groups such as alcohols, epoxides and phenols, the formation of which was promoted with hydroxyl radicals (.OH) and would be remarkably inhibited by bicarbonate, were responsible for the increment of TCM precursor's concentration during ozonation. Results of these studies confirmed low dosage bicarbonate affecting the ozonation pathways, influencing the intermediate species formation and impacting its subsequent TCMFP yields through inhibiting the .OH radicals reactions mainly occurred in high MW fractions.  相似文献   

8.
Xiao H  Liu R  Zhao X  Qu J 《Chemosphere》2008,72(7):1006-1012
Mineralization of 2,4-dichlorophenol (DCP) was studied by ozone with Mn(2+) as an ozonation catalyst. Laboratory scale semi-batch ozonation experiments were conducted at room temperature. The results showed that trace amount of Mn(2+) accelerated the mineralization of DCP. Total organic carbon removal rate was independent on Mn(2+) dosage at its range of 0.1-0.5 mgL(-1). Dissolved ozone concentration in the solution remained low level in the catalytic ozonation process, which indicated that Mn(2+) catalyzed decomposition of ozone. DCP mineralization was inhibited in catalytic ozonation by the addition of carbonate. Electron spin resonance/spin-trapping technique was used to determine hydroxyl radicals, and the results showed that larger amounts of hydroxyl radicals were produced in catalytic ozonation system than those of single ozonation. Intermediates mainly including aliphatic carboxylic acids were determined qualitatively and semi-quantitatively by GC-MS. And, a general pathway for mineralization of DCP was proposed.  相似文献   

9.
Coca M  Peña M  González G 《Chemosphere》2005,60(10):1408-1415
The main operating variables affecting ozonation efficiencies of wastewater from beet molasses alcoholic fermentation have been studied. Semibatch experiments have been performed in order to analyze the influence of pH, bicarbonate ion, temperature and stirring rate on color and organic matter removals. The efficiencies were similar regardless of the pH, which indicates that direct reactions of ozone with wastewater organics were predominant to radical reactions. Gel permeation chromatography confirmed the reduction in the concentration of organics absorbing light at 475 nm after ozonation. The elimination of bicarbonate ion, strong inhibitor of hydroxyl radical reactions, yielded an improvement in both color and COD reduction efficiencies. Acidification for removing bicarbonate ions produced a shift of colored compounds to smaller molecular weights. The highest efficiencies were achieved at 40 degrees C. Color and COD reductions at 40 degrees C were about 90% and 37%, respectively. In no case, the percentage of TOC removed was higher than 10-15%. Stirring rate had a slightly positive effect during the first stage of the ozonation showing that mass transfer played a role only during the initial reaction phase when direct attack of ozone molecules to aromatic/olefinic structures of colored substances was the predominant pathway.  相似文献   

10.
采用臭氧氧化法处理对氯苯酚溶液,研究了pH、温度、气体流量和对氯苯酚初始浓度等因素对处理效果的影响.反应体系pH越高,越有利于氧化反应.用自制的载有Fe,Co,Mn氧化物的活性炭纤维(ACF)催化剂进行催化臭氧氧化对氯苯酚的实验.结果表明,Fe/ACF显示了较好的催化性能和活性.通过在反应体系中加入一定量的羟基自由基猝灭剂,初步探讨了其催化机理,即催化剂和臭氧反应生成了氧化性极强的羟基自由基.  相似文献   

11.
Ozonation characteristics of synthetic Procaine Penicillin G (PPG) formulation effluent were investigated in a semi-batch ozone reactor at different pH (3, 7 and 12), ozone feed rates (600-2600 mg h-1) and COD values (200-600 mg l-1). Ozonation of aqueous PPG effluent resulted in 37 (82)% COD removal after 60 (120) min ozonation when the reaction pH was kept constant at pH=7.900 mg l-1 (corresponding to 50% of the total introduced) ozone was absorbed during a reaction period of 1 h. The effects of increasing the applied ozone dose and the initial COD on the COD abatement rates of PPG effluent were also studied. Results have indicated that increasing the ozone dose and decreasing the COD content both have positive effects on COD removal rates. The significant contribution of the free radical (.OH) reaction pathway to PPG ozonation could be traced using tert-butyl alcohol as the .OH probe compound at varying concentrations. The bimolecular reaction rate constants for the direct reaction of PPG with ozone were found as 152 and 2404 M-1 h-1 at pH=3 and 7, respectively, using the gas phase ozone partial pressures determined from of the outlet gas stream analysis. It could be demonstrated that ozone decomposition to free radicals being triggered by increasing the pH from 3 to 7 is essential for the rate enhancement of PPG effluent ozonation.  相似文献   

12.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   

13.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

14.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (k(obs)) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the k(obs) value increased from 19.3 to 26 M(-1) s(-1) and 67 M(-1) s(-1) when varying the alumina dose from 1 to 2 and 4 g L(-1), respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L(-1), the k(obs) values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M(-1) s(-1), respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M(-1) s(-1) were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

15.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   

16.
This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).  相似文献   

17.
A pilot-scale plug-flow reactor was built to investigate its performance in treating airborne 1,3-butadiene (BD) via ozonation (O3) and ultraviolet (UV)/O3 technologies. Governing factors, such as the initial molar ratio of ozone to BD, UV volumetric electric input power, and moisture content in the influent airstream, were investigated. Experiments were conducted at an influent BD concentration of approximately 50 ppm, an ambient temperature of 26 degrees C, and a gas retention time of 85 sec. Results show that an initial molar ratio of ozone to BD of 3.5 and 2 sufficed to obtain BD decompositions of >90% for ozonation and UV/O3, respectively. The UV irradiance did not directly promote the decomposition of BD, rather, it played a role in promoting the production of secondary oxidants, such as hydroxyl radicals. Kinetic analyses indicate that both types of BD decomposition are peudo-first-order with respect to BD concentrations. Moisture content (relative humidity = 40-99%) and UV volumetric electric input power (0.147 and 0.294 W/L) are both factors that weakly affect the rate of BD decomposition. Economic evaluation factors, including both energy of ozone production and UV electric input power, were also estimated.  相似文献   

18.
Liao CH  Kang SF  Wu FA 《Chemosphere》2001,44(5):1193-1200
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged.  相似文献   

19.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

20.
Enhanced ozonation of simulated dyestuff wastewater by microbubbles   总被引:10,自引:1,他引:9  
Chu LB  Xing XH  Yu AF  Zhou YN  Sun XL  Jurcik B 《Chemosphere》2007,68(10):1854-1860
The ozonation of synthetic wastewater containing azo dye, CI Reactive Black 5, was investigated using a microbubble generator and a conventional bubble contactor. The microbubble generator produced a milky and high intensity microbubble solution in which the bubbles had a mean diameter of less than 58 microm and a numerical density of more than 2.9 x 10(4) counts ml(-1) at a gas flow rate of less than 0.5 l min(-1). Compared with the bubble contactor, the total mass transfer coefficient was 1.8 times higher and the pseudo-first order rate constant was 3.2-3.6 times higher at the same initial dye concentration of 100 mg l(-1), 230 mg l(-1) and 530 mg l(-1) in the proposed microbubble system. The amount of total organic carbon removed per g of ozone consumed was about 1.3 times higher in the microbubble system than in the bubble contactor. The test using terephthalic acid as the chemical probe implied that more hydroxyl radicals were produced in the microbubble system, which contributed to the degradation of the dye molecules. The results suggested that in addition to the enhancement of mass transfer, microbubbles, which had higher inner pressure, could accelerate the formation of hydroxyl radicals and hence improve the oxidation of dye molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号