首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic copolymers, synthesized from poly (ethylene glycols) and various aliphatic diacids, which self assemble into nano-micellar aggregates in aqueous media, were used to develop controlled release (CR) formulations of imidacloprid [1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine] using encapsulation technique. High solubilisation power and low critical micelle concentration (CMC) of these amphiphilic polymers may increase the efficacy of formulations. Formulations were characterised by Infrared (IR) spectroscopy, Dynamic Light Scattering (DLS) and Transmission Electron Microscope (TEM). Encapsulation efficiency, loading capacity and stability after accelerated storage test of the developed formulations were checked. The kinetics of imidacloprid release in water from the different formulations was studied. Release from the commercial formulation was faster than the CR formulations. The diffusion exponent (n value) of imidacloprid, in water ranged from 0.22 to 0.37 in the tested formulations. While the time taken for release of 50 % of imidacloprid ranged from 2.32 to 9.31 days for the CR formulations. The developed CR formulations can be used for efficient pest management in different crops.  相似文献   

2.
Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.  相似文献   

3.
Controlled release formulations of β-cyfluthrin, a non-systemic, broad spectrum contact insecticide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based amphiphilic copolymers. Copolymers of polyethylene glycols of different molecular weights and various dimethyl esters, viz. dimethyl isophthalate, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of β-cyfluthrin from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 025 SC. Release from the commercial formulation was faster than with the developed CR formulations. The rate of release of encapsulated β-cyfluthrin from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of β-cyfluthrin in water ranged from 0.427 to 0.622 in the tested formulations. The release was diffusion controlled with a half-release time (t(?)) of 3.92 to 7.9 days in water from different formulations, and the period of optimum availability (POA) of β-cyfluthrin ranged from 1.4 to 20.5 days. The results suggest that the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period.  相似文献   

4.
Controlled release (CR) formulations of metribuzin in Polyvinyl chloride [(PVC) (emulsion)], carboxy methyl cellulose (CMC), and carboxy methyl cellulose-kaolinite composite (CMC-KAO), are reported. Kinetics of its release in water and soil was studied in comparison with the commercial formulation (75 DF). Metribuzin from the commercial formulation became non-detectable after 35 days whereas it attained maxima between 35–49 days and became non-detectable after 63 days in the developed products. Amongst the CR formulations, the release in both water and soil was the fastest in CMC and slowest in PVC. The CMC-KAO composite reduced the rate of release as compared to CMC alone. The diffusion exponent (n value) of metribuzin in water and soil ranged from 0.515 to 0.745 and 0.662 to 1.296, respectively in the various formulations. The release was diffusion controlled with half release time (t1/2) from different controlled release matrices of 12.98 to 47.63 days in water and 16.90 to 51.79 days in soil. It was 3.25 and 4.66 days, respectively in the commercial formulation. The period of optimum availability of metribuzin in water and soil from controlled released formulations ranged from 15.09 to 31.68 and 17.99 to 34.72 days as against 5.03 and 8.80 days in the commercial formulation.  相似文献   

5.
Controlled release formulations of Thiram (Dimethylcarbamothioylsulfanyl-N,N-dimethylcarbamodithioate), a contact fungicide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based functionalized amphiphilic copolymers. The kinetics of thiram from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 75 WS. Release from the commercial formulation was faster than with the developed CR formulations. Maximum amount of thiram was released on 35th day for PEG-2000 4d, 28th day for PEG-1500 4c, 21st day for PEG-1000 4b and 15th day for PEG-600 4a in comparison to commercial formulation (7th day). The diffusion exponent (n) of thiram in water ranged from 0.356 to 0.545 in the tested formulations. The half-release (t1/2) values ranged between 14.78 to 22.1 days, and the Period of Optimum Availability (POA) of thiram ranged from 7.79 to 25.15 days. An effort has also been made to identify the suitable polymers that could reduce the seed deterioration during storage and also act as an effective carrier of fungicide thiram. The results demonstrate that the seeds coated with the different formulations deteriorated at a slower pace as manifested in high germination percentage over control. Apart from the fungicidal effect of thiram, the polymers acted as barriers to moisture reducing the rate of seed deterioration and checked the degradation of thiram. The CR formulation 4d, with PEG 2000, was found to be most effective as seed coat.  相似文献   

6.
Controlled release nanoformulations of carbendazim (Methyl 1H-benzimidazol-2-ylcarbamate), a systemic fungicide, have been prepared using laboratory synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers. The release kinetics of carbendazim from developed controlled release (CR) formulations was studied and compared with that of the commercially available 50% Wettable Powder (WP). Further, the bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Rhizoctonia solani by the poison food technique method. The release of maximum amount of carbendazim from developed formulations was dependent on the molecular weight of PEGs and was found to increase with increasing molecular weights. The range of carbendazim release was found to be between 10th to 35th day as compared to commercial formulation which was up to 7th day. The diffusion exponent (n value) of carbendazim in water ranged from 0.37 to 0.52 in the tested formulations. The half-release (t1/2) values ranged between 9.47 and 24.20 days, and the period of optimum availability (POA) of carbendazim ranged from 9.15 to 26.63 days. Also, ED50 values of the developed formulations vary from 0.40 to 0.74 mg L?1. These formulations can be used to optimize the release of carbendazim to achieve disease control for the desired period depending on the matrix of the polymer used.  相似文献   

7.
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol–based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t1/2) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.  相似文献   

8.
Controlled release (CR) formulations of carbofuran and imidacloprid were prepared employing polyvinyl chloride and carboxymethyl cellulose (CMC) and their bioefficacy was evaluated against the aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. The CR formulations of carbofuran and imidacloprid provided better or equal control of the pests than commercial formulations. CMC-based formulation provided a superior control of both the pests. The Imida-CMC, which showed the lowest population of leaf hopper (10.50 leafhopper/100 cl), provided significantly superior control among all treatments after 35 days after germination (DAG). The residue of carbofuran and imidacloprid in potato tuber and soils were not detectable at the time of harvesting in any one of the formulations.  相似文献   

9.
Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t1/2) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL?1 (ED50) values of developed formulations varied from 1.31 to 2.79 mg L?1 for A. solani, and 1.60 to 3.14 mg L?1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing use of Mancozeb in lower doses.  相似文献   

10.
Controlled release (CR) formulations of carbofuran and imidacloprid were prepared employing polyvinyl chloride and carboxymethyl cellulose (CMC) and their bioefficacy was evaluated against the aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. The CR formulations of carbofuran and imidacloprid provided better or equal control of the pests than commercial formulations. CMC-based formulation provided a superior control of both the pests. The Imida-CMC, which showed the lowest population of leaf hopper (10.50 leafhopper/100 cl), provided significantly superior control among all treatments after 35 days after germination (DAG). The residue of carbofuran and imidacloprid in potato tuber and soils were not detectable at the time of harvesting in any one of the formulations.  相似文献   

11.
The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in lignin-based granules with different sizes to obtain controlled release formulations (CRFs) and reduce water pollution risk. Kinetics release tests in water and soil showed that the release rate of both from CRFs diminished in comparison to technical products. A linear correlation was obtained between the time taken for 50% of the active ingredient to be released (T50) into water and granule size of the CRFs. Besides, a linear correlation was reached between T50 values in water and soil. Mobility experiments carried out in calcareous soil show that the use of lignin-based CRFs reduces the presence of both herbicides in the leachate compared to the technical grade products. The set of experiments developed in this research can be useful to design, prepare and evaluate formulations with CR properties which can reduce the pollution derived from the use of herbicides.  相似文献   

12.
Different controlled release formulations (CRFs) of isoproturon, imidacloprid and cyromazine have been studied to contribute to diminish, somehow, the problems related to the application of conventional formulations. The alginate-based CRFs were based on sodium alginate (1.90%), Technical grade (TG) isoproturon or imidacloprid (1.20%), natural bentonite (3.30%), and water (93.6%), and the lignin-based CRF was based on kraft lignin (50.0%) and TG cyromazine (50.0%). The mobility of non-formulated TG pesticides and CRFs were compared by using soil columns. The use of CRFs retard release and reduce the presence of pesticides in the leachate and, moreover, the pesticides stay in the soil longer. Sorption capacity of the soil for pesticides was measured using batch experiments. The results obtained (11.67 mg kg(- 1) for isoproturon, 3.17 mg kg(- 1) for imidacloprid and 0.63 mg kg(-1) for cyromazine) were in agreement with those obtained under dynamic conditions.  相似文献   

13.
Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t1/2) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.  相似文献   

14.
Different controlled release formulations (CRFs) of isoproturon, imidacloprid and cyromazine have been studied to contribute to diminish, somehow, the problems related to the application of conventional formulations. The alginate-based CRFs were based on sodium alginate (1.90%), Technical grade (TG) isoproturon or imidacloprid (1.20%), natural bentonite (3.30%), and water (93.6%), and the lignin-based CRF was based on kraft lignin (50.0%) and TG cyromazine (50.0%). The mobility of non-formulated TG pesticides and CRFs were compared by using soil columns. The use of CRFs retard release and reduce the presence of pesticides in the leachate and, moreover, the pesticides stay in the soil longer. Sorption capacity of the soil for pesticides was measured using batch experiments. The results obtained (11.67 mg kg? 1 for isoproturon, 3.17 mg kg? 1 for imidacloprid and 0.63 mg kg?1 for cyromazine) were in agreement with those obtained under dynamic conditions.  相似文献   

15.
Imidacloprid, the major component of many widely used insecticide formulations, is highly persistent in soils. In this study, the sorption of imidacloprid by six soils as well as its photodegradation and hydrolysis in water were studied. The soils differed significantly in organic matter content and other physical and chemical properties. Sorption increased with increasing soil organic matter content but was not significantly correlated with other soil properties. Removal of organic matter via H2O2 oxidation decreased the sorption. By normalizing the Freundlich coefficients (Kf) to organic matter contents, the variability in obtained sorption coefficient (Kom) was substantially reduced. These results indicate that soil organic matter was the primary sorptive medium for imidacloprid. The low heat of sorption calculated from Kom suggests that partition into soil organic matter was most likely the mechanism. The photodegradation and hydrolysis of imidacloprid in water followed pseudo-first-order kinetics; however, the latter process needed a six-time-higher activation energy. While both processes produced the same main intermediate, they occurred via different pathways. The hydrolysis of imidacloprid was not catalyzed by the high interlayer pH in the presence of metal-saturated clays, which appeared to result from the lack of the pesticide adsorption in the interlayers of clays.  相似文献   

16.
The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.  相似文献   

17.
A high-performance liquid chromatography method with diode-array detection (HPLC-DAD) is described for the determination of three neonicotinoid insecticides imidacloprid, thiacloprid, and thiamethoxam in soil and water. The soil samples were extracted with acetonitrile, while the water samples were extracted using C18 cartridges. The mean recoveries plus standard deviations for spiked soil samples were 82 +/- 4.2% for thiamethoxam, 99 +/- 4.2% for imidacloprid and 94 +/- 1.4% for thiacloprid. The recoveries for water samples ranged from 87 +/- 3.4% for thiamethoxam to 97 +/- 3.9% for imidacloprid and 97 +/- 2.6% for thiacloprid. The limits of quantitation (LOQ) were 0.1, 0.1, 0.01 mg/kg in soil (5g), and 2, 2, 0.5, micro/L in water (50 mL) for thiamethoxam, imidacloprid, and thiacloprid, respectively.  相似文献   

18.
A novel composite gel composed of carboxymethyl-chitosan (CM-chit) and bentonite (H-bent) was used as the carrier for encapsulating atrazine and imidacloprid to control their release in water and retard their leaching in soil. Strong interactions between CM-chit and H-bent in the composite were confirmed by FT-IR, and good dispersion of pesticides in the carrier was observed by SEM. According to the results of release experiments in water, the CM-chit/H-bent composite carrier showed double advantages of both encapsulation by the polymer and sorption by the bentonite. The time taken for 50 % of active ingredients to be released, t??, was prolonged to 572 h for atrazine and 24 h for imidacloprid, respectively. The difference between the two pesticides on release behavior was related to their hydrophobicity and water solubility. Leaching experiments through a soil layer showed that this novel carrier reduced the amount of pesticides available for leaching, and would be useful for diminishing the environmental pollution of pesticides.  相似文献   

19.
A novel composite gel composed of carboxymethyl-chitosan (CM-chit) and bentonite (H-bent) was used as the carrier for encapsulating atrazine and imidacloprid to control their release in water and retard their leaching in soil. Strong interactions between CM-chit and H-bent in the composite were confirmed by FT-IR, and good dispersion of pesticides in the carrier was observed by SEM. According to the results of release experiments in water, the CM-chit/H-bent composite carrier showed double advantages of both encapsulation by the polymer and sorption by the bentonite. The time taken for 50 % of active ingredients to be released, t 50, was prolonged to 572 h for atrazine and 24 h for imidacloprid, respectively. The difference between the two pesticides on release behavior was related to their hydrophobicity and water solubility. Leaching experiments through a soil layer showed that this novel carrier reduced the amount of pesticides available for leaching, and would be useful for diminishing the environmental pollution of pesticides.  相似文献   

20.
Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号