首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We document the variation in number of queens occurring naturally in founding, immature and mature nests of the ant Formica podzolica, and compare development of colonies and survivorship of queens in experimental nests started with 1–16 foundresses. Number of queens per nest was associated with stage of colony development. Most nests were monogynous, but 20% of immature nests (n = 66) and 25% of mature nests (n = 92) were oligogynous or polygynous. Colonies were usually established by single queens (i.e., haplometrosis), but colony establishment by multiple queens (i.e., pleometrotis) was also common, occurring in 27% of founding nests (n = 492). Foundress groups in the field were small ( = 1.47 ± 0.04 queens/nest), and large groups experienced high mortality and low productivity in artificial nests. Therefore, the many queens (up to 140) in some immature and mature colonies were probably secondarily pleometrotic. Experimental nests started with 1–4 queens were more successful than those initiated by 8 or 16 queens. Small groups (2–4 queens) produced more pupae before the first nests reared workers than single foundresses or larger groups (8 or 16 queens). Although single foundresses were less productive than queens in small groups, they experienced greater survivorship and less weight loss than queens in pleometrotic associations. Besides low productivity, queen mortality and weight loss were greatest in large groups.  相似文献   

2.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

3.
Summary Field observations and laboratory experiments demonstrate that in the Australian meat ant, Iridomyrmex purpureus, the modes of colony founding are remarkably diverse. New colonies can originate from single foundresses (haplometrosis), or foundress associations (pleometrosis), or by colony budding, or the adoption of newly-mated queens that dig founding chambers next to mature nests (probably their natal nests, as workers protect them and may help them dig). Readoption of foundresses and pleometrosis lead to the coexistence of several queens in one nest. We discovered a striking antagonistic behavior among coexisting queens in young colonies, in the form of ritualized antennation bouts. These interactions result in a reproductive rank order in which dominant queens inhibit egg-laying by subordinates, but escalation into physical fighting is rare. Workers ignore queen dominance interactions and treat all queens equally. The first quantitative ethogram of dominance display behavior between multiple ant queens, and its reproductive consequences, is presented. As a colony grows, queens become intolerant of each other's presence and permanently separate within the nest. Once separated, queens appear to be equal in status, laying approximately equal numbers of eggs. All queens continue to be tolerated by workers, even when the colony has reached a size of several thousand workers and begun to produce reproductives. Such mature nests of I. purpureus fulfill the criteria of oligogyny, defined by worker tolerance toward more than one queen and antagonism among queens, such that a limited number of fully functional queens are spaced far apart within a single colony. Oligogynous colonies can arise in this species by pleometrotic founding (primary oligogyny) or by adoption of queens into existing nests (secondary oligogyny). The adaptive significance of the complex system of colony founding, queen dominance and oligogyny in I. purpureus is discussed.  相似文献   

4.
Summary The contribution to maternity of workers and female sexuals over time by queens in six multiple-queen laboratory colonies of Solenopsis invicta was directly assessed by use of enzyme genetic markers. Queens contributed more equally to the worker pool than to the pool of sexuals in virtually all samples (Fig. 1), and individuals producing a substantial proportion of the workers often had low or no representation of their daughters in the pool of sexuals. Signficant disparity among queens in their relative production of sexual daughters was often evident, with dominance in production of sexuals by a given queen commonly occurring in association with a pronounced loss of weight followed shortly by her death. The results suggest that significant variability in short-as well as long-term reproductive success may occur among the distantly related queens associating in natural polygyne S. invicta nests. Variance in apportionment of maternity of sexuals did not appear to be simply related to varying levels of fecundity, suggesting that the common presumption that reproductive success can be equated with fecundity in polygyne social Hymenoptera may not be well founded. The observed variance also did not appear to result from a simple mechanism of kin recognition and discrimination by workers in the process of brood rearing. Rather, this variance may have largely resulted from either, 1) recognition of certain queens and their progeny coupled with preferential sexualization of these immatures by nurse workers, or, 2) queen biasing of eggs toward development as sexuals. The frequent association of weight loss and death of mother queens with high levels of sexual daughter production may be best explained by the latter mechanism.  相似文献   

5.
Research on the evolution of cooperative groups tends to explore the costs and benefits of cooperation, with less focus on the proximate behavioral changes necessary for the transition from solitary to cooperative living. However, understanding what proximate changes must occur, as well as those pre-conditions already in place, is critical to understanding the origins and evolution of sociality. The California harvester ant Pogonomyrmex californicus demonstrates population-level variation in colony founding over a close geographic range. In adjacent populations, queens either found nests as single individuals (haplometrosis) or form cooperative groups of nonrelatives (pleometrosis). We compared aggregation, aggression, and tolerance of queens from one pleometrotic and two haplometrotic populations during nest initiation, to determine which behaviors show an evolutionary shift and which are present at the transition to pleometrosis. Surprisingly, within-nest aggregative behavior was equally present among all populations. In nesting boxes with multiple available brood-rearing sites, both queen types readily formed and clustered around a single common brood pile, suggesting that innate attraction to brood (offspring) facilitates the transition to social aggregation. In contrast, queens from the three populations differed in their probabilities of attraction on the ground to nest sites occupied by other queens and in levels of aggression. Our results suggest that some key behavioral mechanisms facilitating cooperation in P. californicus are in place prior to the evolution of pleometrosis and that the switch from aggression to tolerance is critical for the evolution of stable cooperative associations.  相似文献   

6.
In several ant species, colonies are founded by small groups of queens (pleometrosis), which coexist until the first workers eclose, after which all but one queen is killed. It has been hypothesized that, by producing a larger cohort of workers, cooperating queens may increase colony success during brood raids, a form of competition in which brood and workers from losing nests are absorbed into winning colonies. To test whether this benefit is sufficient to favor pleometrosis, newly mated queens of the fire ant Solenopsis invicta were assembled in groups of one, two, three, or four, reared in the laboratory until the first workers eclosed, then planted in the field in replicated assemblages. The proportion of colonies engaging in brood raids increased with average foundress number per nest and with colony density but was unaffected by variance in foundress number among interacting colonies. Within mixed assemblages of single-queen and multiple-queen colonies, queen number had no effect on the likelihood of engaging in raids or the probability of nest survival through the brood raiding period. However, following nearly 30% of raids, queens moved to new nests and displaced the resident queens. When queen relocation and subsequent mortality were accounted for, it was found that the survival of queens from four-queen groups was substantially higher than that of solitary queens. By contrast, the survival of queens from two-queen colonies was no greater than that of solitary queens. These results show that the competitive advantages of multiple-queen colonies are sufficient to counterbalance the increased mortality of queens within groups only when the number of foundresses is greater than two and when colonies are founded at high density. When colonies lose brood raids, the workers appear to abandon their mothers to join surviving colonies. However, in laboratory experiments, queens attempting to enter foreign nests were significantly more likely to displace the resident queen if their own daughters were present within the invaded nest. Thus, workers may be able to bias the probability that their mother rejoins them and displaces competing queens.  相似文献   

7.
Abstract: Factors that contribute to the successful establishment of invasive species are often poorly understood. Propagule size is considered a key determinant of establishment success, but experimental tests of its importance are rare. We used experimental colonies of the invasive Argentine ant (   Linepithema humile ) that differed both in worker and queen number to test how these attributes influence the survivorship and growth of incipient colonies. All propagules without workers experienced queen mortality, in contrast to only 6% of propagules with workers. In small propagules (10–1,000 workers), brood production increased with worker number but not queen number. In contrast, per capita measures of colony growth decreased with worker number over these colony sizes. In larger propagules ( 1,000–11,000 workers), brood production also increased with increasing worker number, but per capita brood production appeared independent of colony size. Our results suggest that queens need workers to establish successfully but that propagules with as few as 10 workers can grow quickly. Given the requirements for propagule success in Argentine ants, it is not surprising how easily they spread via human commerce.  相似文献   

8.
Although colonies of the fire ant Solenopsis invicta are often founded by small groups of queens, all but one of the queens are soon eliminated due to worker attacks and queen fighting. The elimination of supernumerary queens provides an important context for tests of discrimination by the workers, since the outcome of these interactions strongly affects the workers' inclusive fitness. To test whether workers in newly founded colonies discriminate among nestmate queens, paired cofoundresses were narrowly separated by metal screens that prevented direct fighting, but through which the workers could easily pass. Soon after the first workers completed development, they often attacked one of the queens; these attacks were strongly associated with queen mortality. When one queen's brood was discarded, so that the adult workers were all the daughters of just one queen, the workers were significantly less likely to bite their mother than the unrelated queen; however, this tendency was comparatively weak. Queens kept temporarily at a higher temperature to increase their rate of investment in brood-rearing lost weight more rapidly than paired queens and were subsequently more likely to be attacked and killed by workers. Workers were more likely to bite queens that had been temporarily isolated than queens that remained close to brood and workers. When queens were not separated by screens, the presence of workers stimulated queen fights. These results show that workers discriminate strongly among equally familiar queens and that discrimination is based more on the queens' condition and recent social environment than on kinship. Received: 9 June 1998 / Accepted after revision: 10 October 1998  相似文献   

9.
When cooperation is based on shared genetic interests, as in most social insect colonies, mechanisms which increase the genetic similarity of group members may help to maintain sociality. Such mechanisms can be especially important in colonies with many queens because within-colony relatedness drops quickly as queen number increases. Using microsatellite markers, we examined the Old World, multiple-queen, swarm-founding wasp Polybioides tabidus which belongs to the ropalidiine tribe, and found that relatedness among the workers was four times higher than what would be expected based on queen number alone. Relatedness was elevated by a pattern of queen production known as cyclical oligogyny, under which, queen number varies, and daughter queens are produced only after the number of old queens has reduced to one or a very few. As a result, the queens are highly related, often as full sisters, elevating relatedness among their progeny, the workers. This pattern of queen production is driven by collective worker control of the sex ratios. Workers are three times more highly related to females than to males in colonies with a single queen while they are more equally related to males and females in colonies with more queens. As a result of this difference, workers will prefer to produce new queens in colonies with a single queen and males in colonies with many queens. Cyclical oligogyny has also evolved independently in another group of swarm-founding wasps, the Neotropical epiponine wasps, suggesting that collective worker control of sex ratios is widespread in polistine wasps. Received: 22 May 2000 / Revised: 24 August 2000 / Accepted: 4 September 2000  相似文献   

10.
Summary There is high within-nest relatedness for functional queens (with corpora lutea), nonfunctional queens (without corpora lutea), and workers in polygynous nests of Leptothorax acervorum. The high functional queen relatedness suggests that young mated queens are adopted back to their mother nest. Functional queen relatedness does not change with the number of queens present in the nest, suggesting that the number of generations of queens, on average two to three, is rather stable. Worker relatedness decreases with increasing number of functional queens per nest (Tables 5, 6). The number of queens contributing offspring to the nest (mothers), estimated from worker and functional queen relatedness, is lower than the number of functional queens, particularly in highly polygynous nests. Estimates of number of mothers in monogynous nests indicate that these nests previously were polygynous (Table 7). There is no correlation between nest relatedness and distance between nests, and budding-off, if present, thus appears to be a rare mode of nest founding (Table 8). There are no indications of inbreeding in the two populations studied since the frequency of heterozygotes is as high as expected from random mating (Table 4). Most likely, polygyny is the rule in L. acervorum and serves to secure the presence of queens in the nest.  相似文献   

11.
Many hypotheses attempt to explain why queens of social insects mate multiply. We tested the sex locus hypothesis for the evolution of polyandry in honey bees (Apis mellifera). A queen may produce infertile, diploid males that reduce the viability of worker brood and, presumably, adversely affect colony fitness. Polyandry reduces the variance in diploid male production within a colony and may increase queen fitness if there are non-linear costs associated with brood viability, specifically if the relationship between brood viability and colony fitness is concave. We instrumentally inseminated queens with three of their own brothers to vary brood viability from 50% to 100% among colonies. We measured the colonies during three stages of their development: (1) colony initiation and growth, (2) winter survival, and (3) spring reproduction. We found significant relationships between brood viability and most colony measures during the growth phase of colonies, but the data were too variable to distinguish significant non-linear effects. However, there was a significant step function of brood viability on winter survival, such that all colonies above 72% brood viability survived the winter but only 37.5% of the colonies below 72% viability survived. We discuss the significance of this and other "genetic diversity" hypotheses for the evolution of polyandry.  相似文献   

12.
Complex, highly integrated societies have evolved from simpler societies repeatedly, and the social insects provide an excellent model system for understanding increasing complexity and integration. In the paper wasps, large societies, known as swarm-founding, have evolved repeatedly from smaller societies, known as independent-founding. Swarm-founding colonies have many more queens than independent-founding colonies, which should dramatically reduce relatedness, posing a challenge to cooperation. However, in each instance, swarm-founding species have also evolved a cyclical pattern of queen reduction which elevates relatedness despite high queen numbers. The genus Ropalidia provides an excellent system in which to study the transition to swarm-founding because it has both independent and swarm-founding species. We studied the Australian independent-founding wasp Ropalidia revolutionalis to better understand the evolution of multiple queens and their periodic reductions in swarm-founding wasps. Using microsatellite genetic markers we genotyped queens, workers and brood from 37 colonies and found that while most colonies had a single queen, three of the colonies had multiple queens at or immediately prior to the time of collection. An additional seven colonies had had multiple co-occurring queens earlier in the season. We also found that colonies experienced many queen losses, and that founding queens were gradually lost until they were replaced by a new cohort of daughter queens in many colonies. This pattern is similar to the periodic reductions and replacements in swarm-founding wasps and suggests that multiple queens and queen cycling evolved relatively early in the shift to swarm-founding in Ropalidia.Communicated by R. Page  相似文献   

13.
We used polymorphic microsatellite markers to study patterns of queen and worker reproduction in annual nests of the wasp Vespula germanica in its introduced range in Australia. We found that queens were typically polyandrous (at least 85.4% mated multiply), with the minimum number of male mates ranging from 1 to 7. Calculations based on nestmate worker relatedness (r=0.46) yielded an estimate of effective queen mating frequency of 2.35. Queens were unrelated to their mates (r=-0.01), indicating that mating occurred at random within Australian V. germanica populations. In addition, the distribution of the minimum number of male mates of queens followed a Poisson distribution. This result suggested that the probability of a queen remating was not affected by previous copulations. We also discovered that mates of polyandrous queens contributed unequally to progeny production leading to significant male reproductive skew within nests. Analyses of nestmate male genotypes revealed that queens usually produced most or all males. However, workers were responsible for the production of many males in a few nests, and, in contrast to theoretical expectations, two of these nests were apparently queenright.  相似文献   

14.
Many benefits and risks of cooperative colony founding (pleometrosis) have been identified, but rarely have the proximate factors that lead to association been considered. This study examined the choices queens make during the first few hours after mating, and some of the correlates of those choices. Queens had a strong affinity for preformed holes in the soil and readily used these as their initial founding chambers. This affinity was so strong that in a field experiment, the dispersion pattern of preformed holes controlled the final dispersion of colony-founding queens. Attraction to partially formed holes is thus an important cause of pleometrosis. The excavation of complete founding chambers incurred no measurable cost on the subsequent reproductive output of queens, suggesting that the primary benefit of using preformed holes is to remove the queen quickly from exposure to predation and desiccation. In the field, pairs of queens offered five equivalent preformed holes in soil were more likely to share the same hole if the holes were shallow and close together. In these experiments, queens modified preformed soil holes so that the test holes were no longer equivalent, causing the choice of queen and hole to become confounded. Laboratory experiments in plaster arenas with unmodifiable holes confirmed the field experiments: queens were more likely to share a hole when the holes were shallow than when they were deep. Because queens entering adequately deep holes seldom reemerged, this suggested that the likelihood of sharing increased with increasing contact between queens, that is, when queens were readily and frequently detected. Such contacts will also predict the future competitive environments to be experienced by incipient colonies, and may temper the tendency of queens to associate. However, experiments in which queens were exposed to high and low densities before pairing in the choice arenas failed to show an effect on the choice to join the resident queen. Queens that joined a resident queen differed in their robustness from queens that did not join. Queens choosing their own partners did no better reproductively than those assigned partners at random. Overall, this study suggests that (1) newly mated queens are under strong selection to leave the soil surface and do so by using any available holes, whether dug by another queen or of some other origin; (2) they are attracted to other queens, and are more likely to cofound as contact with the potential cofoundress becomes more frequent and (3) they choose whether or not to cofound partly on the basis of their own reproductive characteristics. Received: 20 November 1997 / Accepted after revision: 14 March 1998  相似文献   

15.
Summary Male river bullheads guard and care for egg masses during a single brood cycle every breeding season. A study of two bullhead populations demonstrated that nesting males show a strong reduction in food intake rate and that their physical condition deteriorates during parental care. The estimated weight loss for the average guarding male was 18.8% in one population and 13.5% in the other. This could in part be responsible for the peak of male mortality observed during the second part of the breeding season. A high incidence of egg cannibalism was observed in males guarding eggs. Analysis of the developmental stage of individual egg masses demonstrated that heterocannibalism is very rare in this species and that the observed rate of egg cannibalism is mainly due to guarding males preying upon their own eggs (filial cannibalism). In both populations the frequency of filial cannibalism was negatively correlated with the male's chance of getting other food items. The probability of a male cannibalizing its own eggs was also significantly influenced by the time elapsed since the beginning of parental care. The observed limited cannibalism of progeny in the river bullhead cannot be explained as a male's strategy for obtaining energy to be used in subsequent brood cycles, as suggested for other fishes which show filial cannibalism. Rather, it can be interpreted as a behaviour aimed at avoiding the risk of dying of starvation before the eggs hatch. The observed criteria of female mate choice, i.e. a preference for males in good physical condition and for males that already have eggs in their nests, are consistent with the prediction of Rohwer's filial cannibalism theory, although other hypotheses cannot be excluded.  相似文献   

16.
Fire ant polymorphism: the ergonomics of brood production   总被引:3,自引:0,他引:3  
Summary Social organization is generally assumed to increase colony efficiency and survival; however, little quantitative information is available to support this assumption. Polymorphism is an important aspect of labor division in colonies of the fire ant, Solenopsis invicta. Our objective was to investigate the effect of fire ant polymorphism on brood production efficiency. We set up standardized polymorphic colonies with a full range of worker sizes and artificial monomorphic colonies that contained only small, medium or large workers respectively. Polymorphic colonies produced brood at about the same rate as colonies composed of only small workers (Fig. 2A). Colonies composed of only medium workers produced about 30% less brood, and colonies composed of only large workers produced little or no brood at all. This pattern was independent of colony size; however, smaller colonies (0.75 g, live weight) produced almost twice as much brood per gram of workers as larger colonies (3.0g). Additional experiments revealed that the size of workers in the artificial monomorphic colonies affected all stages of brood rearing. Large workers not only inhibited the development of early and late instar larvae (Fig 4), but also reduced the queen's oviposition rate (Fig. 3). Brood production efficiency on an energetic basis was determined by dividing the grams of brood produced per unit time by the energetic costs expended for the maintenance and production of each worker size class. Worker maintenance costs were estimated from respiration while production costs were determined from the caloric content of worker tissue divided by their average longevity. Worker respiration per milligram body weight decreased about 40% as body size increased (Fig. 5). Large workers lived about 50% longer than small workers (Fig. 6) and contained 9% more energy per milligram of tissue (Fig. 7). Energetic efficiency in polymorphic colonies was approximately 10% higher than in colonies composed of only small workers (Fig. 9). In other words, when food supplies are limiting, polymorphism may offer a slight advantage in brood production.  相似文献   

17.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

18.
In many ants, young queens disperse by flying away from their natal nest and found new colonies alone (independent colony founding, ICF). Alternatively, in some species, ICF was replaced by colony fission, in which young queens accompanied by workers found a new colony at walking distance from the mother nest. We compared the queen morphology of Cataglyphis floricola, which disperses by fission, with that of its most likely living ancestor, Cataglyphis emmae, which disperses by ICF. As in other species, the transition from ICF to fission is associated with queen miniaturization. Interestingly, C. floricola presents two types of small queens: brachypters (with short non-functional wings) and ergatoids (worker-like apterous queens). Ergatoids are, on average, 2.8 mg lighter and have half the number of ovarioles than brachypters, which limits the advantage for a colony to produce ergatoids instead of brachypters. Furthermore, more ergatoids are produced than brachypters, but their individual survival rate is lower. During colony fission, 96% of the cocoons containing brachypters but only 31% of those containing ergatoids are transferred to the daughter nests where, after emergence, they compete for becoming the next queen. The remaining queen cocoons, which stay in the mother queen's nest, are eliminated by workers upon emergence, probably to maintain monogyny. This waste of energy suggests that producing ergatoids instead of brachypters is unlikely to increase colony efficiency. We argue that the evolution of ergatoids could derive from a selfish larval strategy, developing into worker-like queens in spite of the colony interest.  相似文献   

19.
Models based on the kin selection theory predict that in social hymenopterans, queens may favor a lower investment in the production of sexuals than workers. However, in perennial colonies, this conflict may be tuned down by colony-level selection because of the trade off between colony survival and reproductive allocation. In this study, we present a survey of sexual production in colonies of Aphaenogaster senilis, a common species of ant in the Iberian Peninsula. Similar to most species that reproduce by fission, males were found in large excess compared to gynes (172:1). Sexuals were more likely to be found in queenless than in queenright (QR) field colonies. However, we also found a few gynes and numerous males in very large QR colonies. We compared these data with those available in the literature for A. rudis, a congeneric species from North America that has independent colony founding. The sex ratio in this species was only five males for each female, and sexuals were mostly found in QR nests, irrespective of colony size. We confirmed queen inhibition of sexual production in A. senilis in laboratory experiments and provide evidence that this inhibition is mediated by a nonvolatile pheromone. To seek the potential source of such a queen pheromone, we analyzed the secretions of two conspicuous exocrine glands, the Dufour’s and postpharyngeal glands (DG and PPG, respectively) in both queens and workers. Both secretions were composed of hydrocarbons, but that of DG also contained small quantities of tetradecanal and hexadecanal. The hydrocarbon profile of the DG and PPG showed notable caste specificity suggesting a role in caste-related behavior. The PPG secretions also differed between colonies suggesting its role in colony-level recognition. We suggest that in A. senilis, there are two modes of colony fission: First, in very large colonies, gynes are produced, probably because of the dilution of the queen pheromone, and consequently one or more gynes leave the mother colony with workers and brood to found a new nest. This is beneficial at the colony level because it avoids the production of costly sexuals in small colonies. However, because the queen and workers have different optima for sexual production, we hypothesize that queens tend to overproduce the pheromone to delay their production. This in turn may drive workers to leave the mother colony during nest relocation and to produce sexuals once they are away from the queen’s influence, creating a second mode of colony fission.  相似文献   

20.
Social parasites exploit their host’s communication system to usurp resources and reproduce. In the honeybee, Apis mellifera, worker reproduction is regulated by pheromones produced by the queen and the brood. Workers usually reproduce when the queen is removed and young brood is absent. However, Cape honeybee workers, Apis mellifera capensis, are facultative intraspecific social parasites and can take over reproduction from the host queen. Investigating the manner in which parasitic workers compete with host queens pheromonally can help us to understand how such parasitism can evolve and how reproductive division of labour is regulated. In A. m. capensis, worker reproduction is associated with the production of queen-like pheromones. Using pheromonal contest experiments, we show that Apis mellifera scutellata queens do not prevent the production of queen-like mandibular gland compounds by the parasites. Given the importance of these pheromones in acquiring reproductive status, our data suggest that the single invasive lineage of parasitic workers occurring in the range of A. m. scutellata was selected for its superior ability to produce these signals despite the presence of a queen. Such resistance was indeed less frequent amongst other potentially parasitic lineages. Resistance to reproductive regulation by host queens is probably the key factor that facilitates the evolution of social parasitism by A. m. capensis workers. It constitutes a mechanism that allows workers to evade reproductive division of labour and to follow an alternative reproductive option by acquiring direct fitness in foreign colonies instead of inclusive fitness in their natal nests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号